All Issue

2023 Vol.14, Issue 1 Preview Page

General Article

31 March 2023. pp. 96-110
Abstract
References
1
D.K.A. Barnes, F. Galgani, R.C. Thompson, and M. Barlaz, Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences. 364(1526) (2009), pp. 1985-1998. 10.1098/rstb.2008.020519528051PMC2873009
2
M. Flury and R. Narayan, Biodegradable plastic as an integral part of the solution to plastic waste pollution of the environment. Current Opinion in Green and Sustainable Chemistry. 30 (2021), pp. 1-7. 10.1016/j.cogsc.2021.100490
3
L.S. Dilkes-Hoffman, S. Pratt, P.A. Lant, and B. Laycock, The Role of Biodegradable Plastic in Solving Plastic Solid Waste Accumulation. Plastics to Energy. (2019), pp. 469-505. 10.1016/B978-0-12-813140-4.00019-4
4
S. Bandopadhyay, L. Martin-Closas, A.M. Pelacho, and J.M. DeBruyn, Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions. Frontiers in Microbiology. 9 (2018). 10.3389/fmicb.2018.0081929755440PMC5932902
5
T. Morohoshi, T. Oi, H. Aiso, T. Suzuki, T. Okura, and S. Sato, Biofilm Formation and Degradation of Commercially Available Biodegradable Plastic Films by Bacterial Consortiums in Freshwater Environments. Microbes and Environments. 33(3) (2018), pp. 332-335. 10.1264/jsme2.ME1803330158390PMC6167122
6
M. de Morais Lima, L.C. Carneiro, D. Bianchini, A.R.G. Dias, E. da Rosa Zavareze, C. Prentice, and A. da Silveira Moreira, Structural, Thermal, Physical, Mechanical, and Barrier Properties of Chitosan Films with the Addition of Xanthan Gum. Journal of Food Science. 82(3) (2017), pp. 698-705. 10.1111/1750-3841.1365328218968
7
F.K.G. dos Santos, K.N. de O. Silva, T.D.N. Xavier, R.H. de L. Leite, and E.M.M. Aroucha, Effect of the Addition of Carnauba Wax on Physicochemical Properties of Chitosan Films. Materials Research. 20(2) (2017), pp. 479-484. 10.1590/1980-5373-mr-2016-1010
8
F. Luangapai, M. Peanparkdee, and S. Iwamoto, Biopolymer films for food industries: properties, applications, and future aspects based on chitosan. Reviews in Agricultural Science. 7 (2019), pp. 59-67. 10.7831/ras.7.0_59
9
G.S. Dhillon, S. Kaur, and S.K. Brar, Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity. International Nano Letters. 4(2) (2014), p. 107. 10.1007/s40089-014-0107-6
10
B. Nowack, H.F. Krug, and M. Height, 120 Years of Nanosilver History: Implications for Policy Makers. Environmental Science & Technology. 45(4) (2011), pp. 1177-1183. 10.1021/es103316q21218770
11
Y. Echegoyen and C. Nerín, Nanoparticle release from nano-silver antimicrobial food containers. Food and Chemical Toxicology. 62 (2013), pp. 16-22. 10.1016/j.fct.2013.08.01423954768
12
G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, and A. Gedanken, Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS-Mediated Cell Injury. Advanced Functional Materials. 19(6) (2009), pp. 842-852. 10.1002/adfm.200801081
13
T. Naseem and T. Durrani, The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environmental Chemistry and Ecotoxicology. 3 (2021), pp. 59-75. 10.1016/j.enceco.2020.12.001
14
P. Terzioglu, Y. Altin, A. Kalemtas, and A. Celik Bedeloglu, Graphene oxide and zinc oxide decorated chitosan nanocomposite biofilms for packaging applications. Journal of Polymer Engineering. 40(2) (2020), pp. 152-157. DOI: 10.1515/polyeng-2019-0240. 10.1515/polyeng-2019-0240
15
A. Giannakas, P. Stathopoulou, G. Tsiamis, and C. Salmas, The effect of different preparation methods on the development of chitosan/thyme oil/montmorillonite nanocomposite active packaging films. Journal of Food Processing and Preservation. 44(2) (2019), pp. 1-15. 10.1111/jfpp.14327
16
W. Yang, E. Fortunati, F. Bertoglio, J. Owczarek, G. Bruni, M. Kozanecki, J. Kenny, L. Torre, L. Visai, and D. Puglia, Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydrate Polymers. 181 (2018), pp. 275-284. 10.1016/j.carbpol.2017.10.08429253973
17
R. Priyadarshi and Y.S. Negi, Effect of Varying Filler Concentration on Zinc Oxide Nanoparticle Embedded Chitosan Films as Potential Food Packaging Material. Journal of Polymers and the Environment. 25(4) (2017), pp. 1087-1098. 10.1007/s10924-016-0890-4
18
S. Valizadeh, M. Naseri, S. Babaei, S.M.H. Hosseini, and A. Imani, Development of bioactive composite films from chitosan and carboxymethyl cellulose using glutaraldehyde, cinnamon essential oil and oleic acid. International Journal of Biological Macromolecules. 134 (2019), pp. 604-612. 10.1016/j.ijbiomac.2019.05.07131100395
19
S. Shankar and J.W. Rhim, Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocolloids. 82 (2018), pp. 116-123. 10.1016/j.foodhyd.2018.03.054
20
A. Vishwakarma, Synthesis of Zinc Oxide Nanoparticle by Sol-Gel Method and Study its Characterization. International Journal for Research in Applied Science and Engineering Technology. 8(4) (2020), pp. 1625-1627. 10.22214/ijraset.2020.4265
21
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, Improved Synthesis of Graphene Oxide. ACS Nano. 4(8) (2010), pp. 4806-4814. 10.1021/nn100636820731455
22
V. Guillard, B. Broyart, C. Bonazzi, S. Guilbert, and N. Gontard, Preventing Moisture Transfer in a Composite Food Using Edible Films: Experimental and Mathematical Study. Journal of Food Science. 68(7) (2003), pp. 2267-2277. 10.1111/j.1365-2621.2003.tb05758.x
23
M.R. Martelli, T.T. Barros, M.R. de Moura, L.H.C. Mattoso, and O.B.G. Assis, Effect of Chitosan Nanoparticles and Pectin Content on Mechanical Properties and Water Vapor Permeability of Banana Puree Films. Journal of Food Science. 78(1) (2013), pp. N98-N104. 10.1111/j.1750-3841.2012.03006.x23278544
24
M.K. Poddar, S. Pradhan, V.S. Moholkar, M. Arjmand, and U. Sundararaj, Ultrasound-assisted synthesis and characterization of polymethyl methacrylate/reduced graphene oxide nanocomposites. AIChE Journal. 64(2) (2018), pp. 673-687. 10.1002/aic.15936
25
S. Perumbilavil, P. Sankar, T. Priya Rose, and R. Philip, White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400-700 nm region. Applied Physics Letters. 107(5) (2015), pp.1-5. 10.1063/1.4928124
26
U. Siripatrawan and B.R. Harte, Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids. 24(8) (2011), pp. 770-775. 10.1016/j.foodhyd.2010.04.003
27
J. Brugnerotto, J. Lizardi, F.M. Goycoolea, W. Argüelles-Monal, J. Desbrières, and M. Rinaudo, An infrared investigation in relation with chitin and chitosan characterization. Polymer. 42(8) (2001), pp. 3569-3580. 10.1016/S0032-3861(00)00713-8
28
Y. Haldorai and J.J. Shim, Chitosan-Zinc Oxide hybrid composite for enhanced dye degradation and antibacterial activity. Composite Interfaces. 20(5) (2013), pp. 365-377. 10.1080/15685543.2013.806124
29
M. Lavorgna, F. Piscitelli, P. Mangiacapra, and G.G. Buonocore, Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydrate Polymers. 82(2) (2010), pp. 291-298. 10.1016/j.carbpol.2010.04.054
30
F.S. Kittur, A.B. Vishu Kumar, and R.N. Tharanathan, Low molecular weight chitosans-preparation by depolymerization with Aspergillus niger pectinase, and characterization. Carbohydrate Research. 338(12) (2003), pp. 1283-1290. 10.1016/S0008-6215(03)00175-712791281
31
S. Kumar, B. Krishnakumar, A.J.F.N. Sobral, and J. Koh, Bio-based (chitosan/PVA/ZnO) nanocomposites film: Thermally stable and photoluminescence material for removal of organic dye. Carbohydrate Polymers. 205 (2019), pp. 559-564. 10.1016/j.carbpol.2018.10.10830446141
32
M.K. Poddar, S. Sharma, and V.S. Moholkar, Investigations in two-step ultrasonic synthesis of PMMA/ZnO nanocomposites by in-situ emulsion polymerization. Polymer. 99 (2016), pp. 453-469. 10.1016/j.polymer.2016.07.052
33
H.Y. Atay, Antibacterial Activity of Chitosan-Based Systems. Functional Chitosan. (2019), pp. 457-489. 10.1007/978-981-15-0263-7_15PMC7114974
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 14
  • No :1
  • Pages :96-110
  • Received Date : 2023-02-10
  • Accepted Date : 2023-01-12
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close