All Issue

2022 Vol.13, Issue 3 Preview Page

General Article

30 September 2022. pp. 328-348
Abstract
References
1
W.S. Moustafa, I.R. Hegazy, and M.M. Eldabousy, Roof geometry as a factor of thermal behavior: simulation- based study of using vaults and domes in the Middle East zone. International Journal of Low-Carbon Technologies. 13(3) (2018), pp. 204-211, DOI: 10.1093/ijlct/cty016.
2
M. Funari, L. Silva, E. Mousavian, and P. Lourenço, Real-time Structural Stability of Domes through Limit Analysis: Application to St. Peter's Dome. International Journal of Architectural Heritage. (2021). DOI: 10.1080/15583058.2021.19. 10.1080/15583058.2021.1992539
3
A. Peterson, The Dictionary of Islamic Architecture. 1996, Routledge. ISBN 978-0-203-20387-3.
4
S. Sadeqi, A. Ekhlassi, and S. Norouzian-Maleki, An analysis of structural aesthetics in architecture case study: Taj-Ol-Molk Dome, Jāmeh Mosque of Isfahan, Iran. SN Applied Sciences, 1 (2019), pp. 1-10. 10.1007/s42452-019-0558-5
5
M. Kayili, "Acoustic Solutions in Classic Ottoman Architecture" (PDF). FSTC (Foundation for Science Technology and Civilisation) Limited. (2005), pp. 1-15. 4087.
6
M. Mahdavinejad, N. Badri, M. Fakhari, and M. Haqshenas, The Role of Domed Shape Roofs in Energy Loss at Night in Hot and Dry Climate (Case Study: Isfahan Historical Mosques Domes in Iran). American Journal of Civil Engineering and Architecture. 1(6) (2013), pp. 117-121. DOI: 10.12691/ajcea-1-6-1. 10.12691/ajcea-1-6-1
7
Z. Soleimani and J. Calautit, Climatic analysis of ventilation and thermal performance of a dome building with roof vent. Engineering Sustainability. 171(8) (2018). DOI: 10.1680/jensu.16.00018.
8
R. Abraham and G. Chandran, Study of Dome structures with specific Focus on Monolithic and Geodesic Domes for Housing. International Journal of Emerging Technology and Advanced Engineering, 6(8) (2016).
9
M. Hadavand and M. Yaghoubi , Thermal behavior of curved roof buildings exposed to solar radiation and wind flow for various orientations. Appl Energy. 85 (2008), pp. 663-679. 10.1016/j.apenergy.2008.01.002
10
R. Tang, I.A. Meir, and T. Wu, Thermal performance of non-air-conditioned building with vaulted roofs in comparison with flat roofs. Build Environ. 41 (2006), pp. 268-276. 10.1016/j.buildenv.2005.01.008
11
E.I. Aghimien, D.H.W. Li, W. Chen, and E.K.W. Tsang, Daylight luminous efficacy: An overview. Solar Energy, 228 (2021), pp. 706-724, DOI: 10.1016/j.solener.2021.05.018.
12
G. Sadeghi, R. Mokhtarshahi Sani, and Y. Wang, Symbolic Meaning of Transparency in Contemporary Architecture: An Evaluation of Recent Public Buildings in Famagusta. Current Urban Studies. 3(4) (2015). 10.4236/cus.2015.34030
13
A. Irakoze, Y. Lee, and K. Kim, An Evaluation of the Ceiling Depth's Impact on Skylight Energy Performance Predictions Through a Building Simulation. Sustainability. 12 (2020), 3117. DOI: 10.3390/su12083117. 10.3390/su12083117
14
A. Sepúlveda, F. De Luca, and J. Kurnitski, Daylight and overheating prediction formulas for building design in a cold climate. Journal of Building Engineering. 45 (2022). 10.1016/j.jobe.2021.103532
15
A. Belakehal, K. Tabet Aoul, and A. Farhi, Daylight as a Design Strategy in the Ottoman Mosques of Tunisia and Algeria. International Journal of Architectural Heritage. 10(6) (2016). 10.1080/15583058.2015.1020458
16
S. Panahiazar and M. Matkan, Qualitative and quantitative analysis of natural light in the dome of San Lorenzo, Turin. Frontiers of Architectural Research. 7(1) (2018). 10.1016/j.foar.2017.11.005
17
E. Aljofi, The Potentiality of Domes on Provision of Daylight in Mosques. International Journal of Applied Engineering Research. 13(7) (2018), pp. 5103-5112.
18
A. Sanusi Hassan and Y. Arab, Analysis of Lighting Performance between Single Dome and Pyramid Roof Mosque in Mostar, Bosnia Herzegovina. Procedia - Social and Behavioral Sciences. 91 (2013), pp. 1-12. 10.1016/j.sbspro.2013.08.395
19
A. Chel, Performance of skylight illuminance inside a dome shaped adobe house under composite climate at New Delhi (India): A typical zero energy passive house. Alexandria Engineering Journal. 53 (2014), pp. 385-397. 10.1016/j.aej.2014.01.006
20
K. Al-Obaidi, M. Ismail, and A. Abdul Rahman, Assessing the allowable daylight illuminance from skylights in single-story buildings in Malaysia: a review. International Journal of Sustainable Building Technology and Urban Development. 6(4) (2015), pp. 236-248. DOI: http://dx.doi.org/10.1080/2093761X.2015.1129369. 10.1080/2093761X.2015.1129369
21
G. Steffy, Architectural Lighting Design. 2001, John Wiley & Sons, New Jersey, USA.
22
T. Mavridou and L. Doulos, Evaluation of Different Roof Types Concerning Daylight in Industrial Buildings during the Initial Design Phase: Methodology and Case Study. Buildings. 9 (2019), 170. DOI: 10.3390/ buildings9070170 10.3390/buildings9070170
23
I. Acosta, J. Navarro, J. Sendra, and P. Esquivias, Daylighting design with lightscoop skylights: Towards an optimization of proportion and spacing under overcast sky conditions. Energy and Buildings. 49 (2012), pp. 394-401. 10.1016/j.enbuild.2012.02.038
24
W. El-Abd, B. Kamel, M. Afify, and M. Dorra, Assessment of skylight design configurations on daylighting performance in shopping malls: A case study. Solar Energy. 170 (2018), pp. 358-368, 10.1016/j.solener.2018.05.052.
25
G. Henriques, J. Duarte, and V. Leal, Strategies to control daylight in a responsive skylight system. Automation in Construction. 28 (2012), pp. 91-105. 10.1016/j.autcon.2012.06.002
26
Q. Kwong, Light level, visual comfort and lighting energy savings potential in a green-certified high-rise building. Journal of Building Engineering. 29 (2020), 101198, DOI: 10.1016/j.jobe.2020.101198.
27
M. Ahmed Sayed and M. Fikry, Impact of glass facades on internal environment of buildings in hot arid zone. Alexandria Engineering Journal. 58(3) (2019), pp. 1063-1075, DOI: 10.1016/j.aej.2019.09.009.
28
IEA (The international Energy Agency). 2010. Daylighting in building. UK: AECOM.
29
A. Eltaweel, M. Alaa Mandour, Q. Lv, and Y. Sua, Daylight Distribution Improvement Using Automated Prismatic Louvre. Journal of Daylighting. 7 (2020), pp. 84-92. 10.15627/jd.2020.7
30
V. Shemelin, T. Matuska, B. Sourek, and V. Jirka, Energy savings potential from prismatic glass structure. E3S Web of Conferences. 167 (2020), 06004. 10.1051/e3sconf/202016706004
31
S. Yeh, A natural lighting system using a prismatic daylight collector. Lighting Research & Technology. 46(5) (2014). 10.1177/1477153514523637
32
Z. Tian, Y. Lei, Y. Wang, J. Wu1, Y. Zou, and L. Meng, Daylight illuminance with prismatic film glazing in a factory building. IOP Conf. Series: Earth and Environmental Science. 153 (2018), 052061. DOI: 10.1088/ 1755-1315/153/5/052061 10.1088/1755-1315/153/5/052061
33
I. Mashaly, K. Nassar, and S. El-Haggar, Mathematical model for designing a light redirecting prismatic panel. Solar Energy. 159 (2018), pp. 638-649, DOI: 10.1016/j.solener.2017.11.014.
34
A. Vlachokostas and N. Madamopoulos, Daylight and thermal harvesting performance evaluation of a liquid filled prismatic façade using the Radiance five-phase method and EnergyPlus. Building and Environment. 126 (2017), pp. 396-409. 10.1016/j.buildenv.2017.10.017
35
G. Courret, B. Paule, and J.L. Scartezzini, Anidolic zenithal openings: Daylighting and shading. International Journal of Lighting Research and Technology. 28(1) (1996), pp. 11-17. 10.1177/14771535960280010201
36
C. Simone, G. Molteni, B. Courret, L. Paule, J.L. Michel, and Scartezzini, Design of anidolic zenithal lightguides for daylighting of underground spaces. Solar Energy. 69(6) (2001), pp. 117-129, DOI: 10.1016/S0038-092X(01)00065-2.
37
F. Linhart, S. Wittkopf, and J. Scartezzini, Performance of Anidolic Daylighting Systems in tropical climates - Parametric studies for identification of main influencing factors. Solar Energy. 84(7) (2010), pp. 1085-1094, DOI: 10.1016/j.solener.2010.01.014.
38
J. Scartezzini and G. Courret, Anidolic daylighting systems. Solar Energy. 73(2) (2002), pp. 123-135, DOI: 10.1016/S0038-092X(02)00040-3.
39
S. Wittkopf, E. Yuniarti, and S. Kuan, Prediction of energy savings with anidolic integrated ceiling across different daylight climates. Energy and Buildings. 38(9) (2006), pp. 1120-1129, DOI: 10.1016/j.enbuild.2006.01.005.
40
M. Collados, D. Chemisana, and J. Atencia, Holographic solar energy systems: The role of optical elements. Renewable and Sustainable Energy Reviews. 59 (2016), pp. 130-140, DOI: 10.1016/j.rser.2015.12.260.
41
P.A.B. James and A.S. Bahaj, Holographic optical elements: various principles for solar control of conservatories and sunrooms. Solar Energy. 78(3) (2005), pp. 441-454, DOI: 10.1016/j.solener.2004.05.022.
42
J. Marín-Sáez, D. Chemisana, Á. Moreno, A. Riverola, J. Atencia, and M.-V. Collados, Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications. Energies. 9(8) (2016), 577. DOI: 10.3390/EN9080577
43
I.R. Edmonds and P.J. Greenup, Daylighting in the tropics. Solar Energy. 73(2) (2002), pp. 111-121, DOI: 10.1016/S0038-092X(02)00039-7.
44
P.J. Greenup and I.R. Edmonds, Test room measurements and computer simulations of the micro-light guiding shade daylight redirecting device. Solar Energy. 76(1-3) (2004), pp. 99-109, 10.1016/j.solener.2003.08.018.
45
F. Hammad and B. Abu-Hijleh, The energy savings potential of using dynamic external louvers in an office building. Energy and Buildings. 42(10) (2010), pp. 1888-1895, DOI: 10.1016/j.enbuild.2010.05.024.
46
A. Hashemi, Daylighting and solar shading performances of an innovative automated reflective louvre system. Energy and Buildings. 82 (2014), pp. 607-620, DOI: 10.1016/j.enbuild.2014.07.086.
47
K. Konis and E. Lee, Measured daylighting potential of a static optical louver system under real sun and sky conditions. Building and Environment. 92 (2015), pp. 347-359, DOI: 10.1016/j.buildenv.2015.04.024.
48
T. Kazanasmaz, L. Grobe, C. Bauer, M Krehel, and S. Wittkopf, Three approaches to optimize optical properties and size of a South-facing window for spatial Daylight Autonomy. Building and Environment. 102 (2016), pp. 243-256, DOI: 10.1016/j.buildenv.2016.03.018.
49
Y. Cai, Y. Nan, and Z. Guo, Enhanced absorption of solar energy in a daylighting louver with Ni-water nanofluid. International Journal of Heat and Mass Transfer. 158 (2020), DOI:  10.1016/j.ijheatmasstransfer.2020.119921.
50
A. Freewan, L. Shao, and S. Riffat, Interactions between louvers and ceiling geometry for maximum daylighting performance. Renewable Energy. 34(1) (2009), pp. 223-232, DOI: 10.1016/j.renene.2008.03.019.
51
F. Hernández, J. López, J. Suárez, M. Muriano, and S. Rueda, Effects of louvers shading devices on visual comfort and energy demand of an office building. A case of study. Energy Procedia. 140 (2017), pp. 207-216. 10.1016/j.egypro.2017.11.136
52
A. Soler and P. Oteiza, Dependence on solar elevation of the performance of a light shelf as a potential daylighting device. Renew. Energy. 8 (1996), pp. 198-201. 10.1016/0960-1481(96)88845-8
53
S.T. Claros and A. Soler, Indoor daylight climate-influence of light shelf and model reflectance on light shelf performance in Madrid for hours with unit sunshine fraction. Build. Environ. 37 (2002), pp. 587-598. 10.1016/S0360-1323(01)00074-9
54
C. Kurtay and O. Esen, A new method for light shelf design according to latitudes: Cun-okay light shelf curves. J. Build. Eng. 10 (2017), pp. 140-148. 10.1016/j.jobe.2017.02.008
55
U. Berardi and H.K. Anaraki, Analysis of the impacts of light shelves on the useful daylight illuminance in office buildings in Toronto. Energy Procedia. 78 (2015), pp. 1793-1798. 10.1016/j.egypro.2015.11.310
56
U. Berardi and H.K. Anaraki, The benefits of light shelves over the daylight illuminance in office buildings in Toronto. Indoor Built Environ. 27 (2018), pp. 244-262. 10.1177/1420326X16673413
57
A. Meresi, Evaluating daylight performance of light shelves combined with external blinds in south-facing classrooms in Athens, Greece. Energy Build. 116 (2016), pp. 190-205. 10.1016/j.enbuild.2016.01.009
58
H. Lee, K. Kim, J. Seo, and Y. Kim, Effectiveness of a perforated light shelf for energy saving. Energy Build. 144 (2017), pp. 144-151. 10.1016/j.enbuild.2017.03.008
59
H. Lee, Performance evaluation of a light shelf with a solar module based on the solar module attachment area. Build. Environ. 159 (2019), 106161. 10.1016/j.buildenv.2019.106161
60
H. Lee, J. Seo, and C. Choi, Preliminary study on the performance evaluation of a light shelf based on reflector curvature. Energies. 12 (2019), 4295. 10.3390/en12224295
61
H. Lee and J. Seo, Performance evaluation of external light shelves by applying a prism sheet. Energies. 13 (2020), 4618. 10.3390/en13184618
62
H. Lee, A basic study on the performance evaluation of a movable light shelf with a rolling reflector that can change reflectivity to improve the visual environment. Int. J. Environ. Res. Public Health. 17 (2020), 8338. 10.3390/ijerph1722833833187274PMC7696370
63
H. Lee, X. Zhao, and J. Seo, A study of optimal specifications for light shelves with photovoltaic modules to improve indoor comfort and save building energy. Int. J. Environ. Res. Public Health. 18 (2021), 2574. 10.3390/ijerph1805257433806602PMC7967301
64
A. Ávila-Zamora and N. Murillo-Quirós, Effect of Light Distribution in a Scale Model Due to Different Light Shelves. Tecnología en Marcha. 8 (2020), pp. 17-25.
65
N. Sadaf, K. Humaira, and A. Abrar, A comparative study on daylight performance assessment of light shelves based on inclination. Mehran Univ. Res. J. Eng. Technol. 39 (2020), pp. 800-805. 10.22581/muet1982.2004.12
66
S. Ruggiero, Assimakopoulos, R.F. De Masi, F. de Rossi, A. Fotopoulou, D. Papadaki, G.P. Vanoli, and A. Ferrante, Multi-disciplinary analysis of light shelves application within a student dormitory refurbishment. Sustainability. 13 (2021), 8251. 10.3390/su13158251
67
Y. Sun, R. Liang, Y. Wu, R. Wilson, and P. Rutherford, Glazing systems with Parallel Slats Transparent Insulation Material (PS-TIM): Evaluation of building energy and daylight performance. Energy and Buildings. 159 (2018), pp. 213-227, DOI: 10.1016/j.enbuild.2017.10.026.
68
C.H. Davila and F. Fiorito, On the combined use of laser-cut panel light redirecting systems and horizontal blinds for daylighting and solar heat control, a focus on visual comfort objectives. Solar Energy. 230 (2021), pp. 186-194, DOI: 10.1016/j.solener.2021.09.071.
69
I.R. Edmonds and D.J. Pearce, Enhancement of crop illuminance in high latitude greenhouses with laser-cut panel glazing. Solar Energy. 66(4) (1999), pp. 255-265. DOI: 10.1016/S0038-092X(99)00030-4.
70
G. Courret and J.-L. Scartezzini, Anidolic Solar Blinds - Sun Control with Three-dimensional Optics. 1998, Euro Sun'98 - The Second ISES Europe Solar Congress - Slovenia.
71
A. Ahadi, M. Saghafi, and M. Tahbaz, The study of effective factors in daylight performance of light-wells with dynamic daylight metrics in residential buildings. Solar Energy. 155 (2017), pp. 679-697, DOI: 10.1016/j.solener.2017.07.005.
72
C.F. Reinhart and J. Wienold, The daylighting dashboard a simulation-based design analysis for daylit spaces. BuildEnviro. 46 (2011), pp. 386-396. 10.1016/j.buildenv.2010.08.001
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 13
  • No :3
  • Pages :328-348
  • Received Date : 2022-05-12
  • Accepted Date : 2022-09-24
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close