All Issue

2022 Vol.13, Issue 1 Preview Page

General Article

31 March 2022. pp. 11-22
Abstract
References
1
M.J. Moradi, M. Khaleghi, J. Salimi, V. Farhangi, and A.M. Ramezanianpour, Predicting the compressive strength of concrete containing metakaolin with different properties using ANN. Measurement. 183 (2021), pp. 109790. 10.1016/j.measurement.2021.109790
2
C.O. Nwankwo, G.O. Bamigboye, I.E. Davies, and T.A. Michaels, High volume Portland cement replacement: a review. Construct. Build. Mater. 260 (2020), pp. 120445. 10.1016/j.conbuildmat.2020.120445
3
IEA (International Energy Agency), World Business Council for Sustainable Development, Cement Technology Roadmap Carbon Emissions Reductions up to 2050, 2009.
4
A. Sadeghi-Nik, J. Berenjian, A. Bahari, A.S. Safaei, and M. Dehestani, Modify microstructure and mechanical properties of cement by nanoparticles through a sustainable development approach. Construct. Build. Mater. 155 (2017), pp. 880-891. 10.1016/j.conbuildmat.2017.08.107
5
N. Lippiatt, T.C. Ling, and S.Y. Pan, Towards carbon-neutral construction materials: carbonation of cement-based materials and the future perspective. Journal of Building Engineering. 28 (2020), pp. 101062. 10.1016/j.jobe.2019.101062
6
E. Gartner and H. Hirao, A review of alternative approaches to reducing CO2 emissions associated with the manufacture of the binder phase in concrete. Cement Concr. Res. 78 (2015), pp. 126-142. 10.1016/j.cemconres.2015.04.012
7
V. Afroughsabet, L. Biolzi, P.J.M. Monteiro, and M.M. Gastaldi, Investigate sustainable high-performance concrete's mechanical and durability properties based on calcium sulfoaluminate cement. Journal of Building Engineering. 43 (2021). 10.1016/j.jobe.2021.102656
8
J. Ke, M. Mcneil, L. Price, N.Z. Khanna, and N. Zhou, Estimation of CO2 emissions from China's cement production: methodologies and uncertainties. Energy Pol. 57 (2013), pp. 172-181. 10.1016/j.enpol.2013.01.028
9
L. Shen, T. Gao, J. Zhao, L. Wang, L. Wang, L. Liu, F. Chen, and J. Xue, Factory-level measurements on CO2 emission factors of cement production in China. Renew. Sustain. Energy Rev. 34 (2014), pp. 337-349. 10.1016/j.rser.2014.03.025
10
IEA (International Energy Agency), CO2 emissions from Fuel Combustion. International Energy Agency, France, 2016.
11
IPCC, Climate Change 2014: Mitigation of Climate Change, IPCC Fifth Assessment Report Working Group III Report. Cambridge University Press, Cambridge, 2014.
12
N. Mohamad, K. Muthusamy, R. Embong, A. Kusbiantoro, and M. Hanafi, Environmental impact of cement production and Solutions: A review, Materials Today: Proceedings, (2021). 10.1016/j.matpr.2021.02.212
13
V. Steinbach and F.W. Wellmer, Consumption and use of non-renewable mineral and energy raw materials from an economic geology point of view. In Sustainability. 2(5) (2010), pp. 1408-1430. 10.3390/su2051408
14
A. Fugiel, D. Burchart-Korol, K. Czaplicka-Kolarz, and A. Smoliński, Environmental impact and damage categories caused by air pollution emissions from mining and quarrying sectors of European countries. Journal of Cleaner Production, 143 (2017), pp. 159-168. 10.1016/j.jclepro.2016.12.136
15
W. Zhai, J. Ding, X. An, and Z. Wang, An optimization model of sand and gravel mining quantity considering healthy ecosystem in Yangtze River, China. Journal of Cleaner Production, 242 (2020). 10.1016/j.jclepro.2019.118385
16
K. Muthusamy, M.H. Rasid, N.N. Isa, N.H. Hamdan, N.A.S. Jamil, S. Wan Ahmad, and A.M. Albshir Budiea, Mechanical properties and acid resistance of oil palm shell lightweight aggregate concrete containing coal bottom ash. Materials Today: Proceedings. 41 (2020), pp. 47-50. 10.1016/j.matpr.2020.10.1001
17
S. Zhang, E. Worrell, W. Crijns-Graus, M. Krol, and M. Bruine, Modeling energy efficiency to improve air quality and health effects of China's cement industry. Appl. Energy. 184 (2016), pp. 574-593. 10.1016/j.apenergy.2016.10.030
18
K. Muthusamy, J. Mirza, N.A. Zamri, M.W. Hussin, A.P.P. Abdul Majeed, A. Kusbiantoro, and A.M. Albshir Budiea, Properties of high strength palm oil clinker lightweight concrete containing palm oil fuel ash in a tropical climate. Construction and Building Materials. 199 (2019), pp. 163-177. 10.1016/j.conbuildmat.2018.11.211
19
A.S.M. Akid, S. Hossain, Md.I.U. Munshi, M.M.A. Elahi, Md.H.R. Sobuz, V.W.Y. Tam, and Md.S. Islam, Assessing the influence of fly ash and polypropylene fiber on fresh, mechanical and durability properties of concrete. Journal of King Saud University - Engineering Sciences, (2021). 10.1016/j.jksues.2021.06.005
20
D.N. Carss, A.C. Brito, P. Chainho, A. Ciutat, X. de Montaudouin, R.M. Fernández Otero, M.I. Filgueira, A. Garbutt, M.A. Goedknegt, S.A. Lynch, K.E. Mahony, O. Maire, S.K. Malham, F. Orvain, A. van der Schatte Olivier, and L. Jones, Ecosystem services provided by a non-cultured shellfish species: The common cockle Cerastoderma edule. Mar. Environ. Res. 158 (2020), pp. 10. 10.1016/j.marenvres.2020.10493132501263
21
S.K. Malham, T.H. Hutchinson, and M.A. Longshaw, Review of the biology of European cockles (Cerastoderma spp.), J. Mar. Biol. Assoc. United Kingdom, 92 (7) (2012), pp. 1563-1577. 10.1017/S0025315412000355
22
S. Wamuchii and M. Clams, Cockles and ark shells Market Insights [Online], 2020. Available at: https://www.selinawamucii.com/insights/market/malaysia/clams-cockles-and-ark-shells/ [Accessed 2021/9/11].
23
Wild Fact Sheet of Singapore, 'See-ham' Anadara species [Online], 2016. Available at: http://www.wildsingapore.com/wildfacts/mollusca/bivalvia/arcidae/anadara.htm [Accessed 2021/9/11].
24
U.G. Eziefula, J.C. Ezeh, and B.I. Eziefula, Properties of seashell aggregate concrete: A review. Construction and Building Materials. 192 (2018), pp. 287-300. 10.1016/j.conbuildmat.2018.10.096
25
F. Manoli and E. Dalas, Spontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol. J. Cryst. Growth. 218 (2000), pp. 359-364. 10.1016/S0022-0248(00)00560-1
26
M. Mohamed, S. Yousuf, and S. Maitra, Decomposition study of calcium carbonate in cockle shell. Journal of Engineering Science and Technology. 7(1) (2020), pp. 1-10.
27
M.M. Mailafiya, K. Abubakar, A. Danmaigoro, S.M. Chiroma, E.B.A. Rahim, M.A.M. Moklas, and Z.A.B. Zakaria, Cockle shell-derived calcium carbonate (aragonite) nanoparticles: A dynamite to nanomedicine. Applied Sciences (Switzerland). 9(14) (2019). 10.3390/app9142897
28
J. Wang, E. Liu, and L. Li, Characterization on the recycling of waste seashells with Portland cement towards sustainable cementitious materials. J. Clean. Prod. 220(20) (2019), pp. 235-252. 10.1016/j.jclepro.2019.02.122
29
K.N. Islam, M.Z.B.A. Bakar, M.M. Noordin, M.Z.B. Hussein, N.S.B.A. Rahman, and M.E. Ali, Characterisation of calcium carbonate and its polymorphs from cockle shells (Anadara granosa). Powder Technol. 213 (1) (2011), pp. 188-191. 10.1016/j.powtec.2011.07.031
30
N. Nordin, Z. Hamzah, O. Hashim, F.H. Kasim, and R. Abdullah, Effect of temperature in calcination process of seashells. Malays. J. Anal. Sci. 19 (1) (2015), pp. 65-70.
31
B.A. Tayeh, M.W. Hasaniyah, A. Zeyad, and M.O. Yusuf, Properties of concrete containing recycled seashells as cement partial replacement: a review. J. Clean. Prod. (2019), pp. 117723. 10.1016/j.jclepro.2019.117723
32
P. Lertwattanaruk, N. Makul, and C. Siripattarapravat, Utilization of ground waste seashells in cement mortars for masonry and plastering. Journal of Environmental Management. 111 (2012), pp. 133-141. 10.1016/j.jenvman.2012.06.03222841935
33
F. Soltanzadeh, M. Emam-Jomeh, A. Edalat-Behbahani, and Z. Soltanzadeh, Development and characterization of blended cements containing seashell powder. Construction and Building Materials. 161 (2018), pp. 292-304. 10.1016/j.conbuildmat.2017.11.111
34
M. Olivia, R. Oktaviani, Ismeddiyanto, Properties of Concrete Containing Ground Waste Cockle and Clam Seashells. Procedia Engineering. 171 (2017), pp. 658-663. 10.1016/j.proeng.2017.01.404
35
M. Olivia, A.A. Mifshella, and L. Darmayanti, Mechanical properties of seashell concrete. Procedia Engineering. 125 (2015), pp. 760-764. 10.1016/j.proeng.2015.11.127
36
N.O.R. Hazurina, A.B.U. Bakar, M. Johari, and M.A.T. Don, Use of Cockle (Anadara granosa) Shell Ash as Partial Cement Replacement in Concrete, Malaysian Journal of Civil Engineering, (2013), pp. 369-376.
37
N. Razali, Utilization of Cockle Shells as Partial Binder Replacement. Journal of Engineering and Technology. 8(2) (2017).
38
A.B. Al-Zubaidi, R.U. Abbas, and A.A. Al-tabbakh, Mechanical and thermal properties of cockle's shell cementing material. Iraqi Journal of Physics. 13(26) (2015), pp. 107-111. 10.30723/ijp.v13i26.290
39
K. Muthusamy, R. Embong, N. Mohamad, N.S.H. Kamarul Bahrin, and M.F. Yahaya, Setting Time and Compressive Strength of Mortar Containing Cockle Shell Powder as Partial Cement Replacement. Key Engineering Materials. 879 (2021), pp. 62-67. 10.4028/www.scientific.net/KEM.879.62
40
K. Muthusamy, N. Sabri, Cockle Shell: A Potential Partial Coarse Aggregate Replacement in Concrete, International Journal of Science. Environment and Technology. 1(4) (2012), pp. 260-267.
41
E. Khankhaje, M. Rafieizonooz, M.R. Salim, J. Mirza, Salmiati, and M.W. Hussin, Comparing the effects of oil palm kernel shell and cockle shell on properties of pervious concrete pavement. International Journal of Pavement Research and Technology. 10(5) (2017), pp. 383-392. 10.1016/j.ijprt.2017.05.003
42
S.K. Mahmood, M.Z.A.B. Zakaria, I.S.B.A. Razak, L.M. Yusof, A.Z. Jaji, I. Tijani, and N.I. Hammadi, Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair. Biochemistry and Biophysics Reports. (2017), pp. 237-251. 10.1016/j.bbrep.2017.04.00828955752PMC5614679
43
N.F. Mohammad, M.A. Zahid, S.A. Awang, Z. Zakaria, and A.A. Abdullah, Synthesis and characterization of bioceramic from Malaysian cockle shell. ISIEA 2010 - 2010 IEEE Symposium on Industrial Electronics and Applications. (2010), pp. 413-416. 10.1109/ISIEA.2010.5679432
44
M.E. Hoque, Processing and Characterization of Cockle Shell Calcium Carbonate (CaCO3) Bioceramic for Potential Application in Bone Tissue Engineering. Journal of Material Science & Engineering. 02(04) (2013), pp. 2-6. 10.4172/2169-0022.1000132
45
J.H. Shariffuddin, M.I. Jones, and D.A. Patterson, Greener photocatalysts: Hydroxyapatite derived from waste mussel shells for the photocatalytic degradation of a model azo dye wastewater. Chemical Engineering Research and Design. 91(9) (2013), pp. 1693-1704. 10.1016/j.cherd.2013.04.018
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 13
  • No :1
  • Pages :11-22
  • Received Date : 2022-01-24
  • Accepted Date : 2022-03-04
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close