All Issue

2022 Vol.13, Issue 4 Preview Page

General Article

30 December 2022. pp. 436-453
Abstract
References
1
A. Pappu, M. Saxena, and S. R. Asolekar, Solid wastes generation in India and their recycling potential in building materials. Building and Environment. 42(6) (2007), pp. 2311-2320. DOI: 10.1016/j.buildenv.2006.04.015. 10.1016/j.buildenv.2006.04.015
2
M. Manjunatha, T.V. Reshma, K.V.G.D. Balaji, A. Bharath, and R.B. Tangadagi, The sustainable use of waste copper slag in concrete: An experimental research. Materials Today: Proceedings. 47 (2021), pp. 3645-3653. DOI: 10.1016/j.matpr.2021.01.261. 10.1016/j.matpr.2021.01.261
3
A.A. Elbaz, A.M. Aboulfotoh, A.M. Dohdoh, and A.M. Wahba, Review of beneficial uses of cement kiln dust (CKD), fly ash (FA) and their mixture. Mater. Environ. Sci. 10(11) (2019), pp. 1062-1073.
4
R.R. Pai, M.D. Bakare, S. Patel, and J.T. Shahu, Structural Evaluation of Flexible Pavement Constructed with Steel Slag-Fly Ash-Lime Mix in the Base Layer. Journal of Materials in Civil Engineering. 33(6) (2021), 04021097.1-04021097.12. DOI: 10.1061/(ASCE)MT.1943-5533.0003711. 10.1061/(ASCE)MT.1943-5533.0003711
5
A.C. Raposeiras, D. Movilla-quesada, O. Muñoz-cáceres, V.C. Andrés-valeri, and M. Lagos-varas, Production of asphalt mixes with copper industry wastes: Use of copper slag as raw material replacement. Journal of Environmental Management. 293 (2021), pp. 1-8. DOI: 10.1016/j.jenvman.2021.112867. 10.1016/j.jenvman.2021.11286734062424
6
S. Anandaraj, N. Deepa, R. Gobinath, A.R. Krishnaraja, M. Harihanandh, and G. Gopinathan, An Experimental Study on Partial Replacement of Fine Aggregate by Crusher Dust and Coarse Aggregate by Tile Waste in Concret. In IOP Conference Series: Materials Science and Engineering. 1145 (1) (2021), 012004, pp. 1-6. DOI: 10.1088/1757-899X/1145/1/012123. 10.1088/1757-899X/1145/1/012123
7
B. Paikaray, S.K. Das, and B.G. Mohapatra, Bearing capacity of model footing on reinforced foundation with crusher dust. Arabian Journal of Geosciences. 14(1) (2021). pp. 1-10. DOI: 10.1007/s12517-020-06441-0. 10.1007/s12517-020-06441-0
8
L. Yadu and R.K. Tripathi, Effect of Depth and Number of Layers of Reinforcement on Bearing-Capacity Ratio of Strip Footing Resting on Granulated Blast-Furnace Slag Reinforced with Geogrid. In Geo-Congress 2014: Geo-characterization and Modeling for Sustainability. (2014), pp. 3605-3614. DOI: 10.1061/9780784413272.349. 10.1061/9780784413272.349
9
M.J.A. Al-Mosawe, B.S. Albusoda, and A.S. Yaseen, Bearing capacity of shallow footing on soft clay improved by compacted fly ash. Journal of Engineering. Journal of Engineering. 17(6) (2011), pp.1473-1482.
10
S.K. Ahirwar and J.N. Mandal, Experimental study on bamboo grid reinforced copper slag overlying soft subgrade. Construction and Building Materials. 306 (2021), pp. 1-12. DOI: 10.1016/j.conbuildmat.2021.124758. 10.1016/j.conbuildmat.2021.124758
11
A. Kumar, A.K. Choudhary, and S.K. Shukla, Behaviour of Strip Footing Resting on Pretensioned Geogrid-Reinforced Ferrochrome Slag Subgrade. In Construction in Geotechnical Engineering, Springer, Singapore, 84 (2020), pp. 503-519. DOI: 10.1007/978-981-15-6090-3_37. 10.1007/978-981-15-6090-3_37
12
B.B. Lind, A.M. Fällman, and L.B. Larsson, Environmental impact of ferrochrome slag in road construction. Waste Management. 21(3) (2001), pp. 255-264. DOI: 10.1016/S0956-053X(00)00098-2. 10.1016/S0956-053X(00)00098-211280517
13
M. Mahamaya and S.K. Das, Characterization of ferrochrome slag as a controlled low-strength structural fill material. International Journal of Geotechnical Engineering. 14(3) (2020), pp. 312-321. DOI: 10.1080/19386362.2018.14485273. 10.1080/19386362.2018.1448527
14
P.H. Kumar, A. Srivastava, V. Kumar, M.R. Majhi, and V.K. Singh, Implementation of industrial waste ferrochrome slag in conventional and low cement castables: Effect of microsilica addition. Journal of Asian Ceramic Societies. 2(2) (2018), pp. 169-175. DOI: 10.1016/j.jascer.2014.03.004. 10.1016/j.jascer.2014.03.004
15
M. Mahamaya and S.K. Das, Characterization of ferrochrome slag as a controlled low-strength structural fill material. International Journal of Geotechnical Engineering. 14(3) (2018), pp. 312-321. DOI: 10.1080/19386362.2018.1448527. 10.1080/19386362.2018.1448527
16
H.H. Pariser, N.R. Backeberg, O.C.M. Masson, and J.C.M. Bedder, Changing nickel and chromium stainless steel markets - a review. Journal of the Southern African Institute of Mining and Metallurgy. 118(6) (2018), pp. 563-568. DOI: 10.17159/2411-9717/2018/v118n6a1. 10.17159/2411-9717/2018/v118n6a1
17
P.C. Hayes, Tenth International Ferroalloys Congress. Transformation through Technology, INFACON X, Cape Town, South Africa, (2004).
18
A. Yılmaz and M. Karaşahin, Mechanical properties of ferrochromium slag in granular layers of flexible pavements. Materials and Structures. 43(3) (2009), pp. 309-317. DOI: 10.1617/s11527-009-9490-2. 10.1617/s11527-009-9490-2
19
S. Jena and R. Panigrahi, Performance assessment of geopolymer concrete with partial replacement of ferrochrome slag as coarse aggregate. Construction and Building Materials. 220 (2019), pp. 525-537. DOI: 10.1016/j.conbuildmat.2019.06.045. 10.1016/j.conbuildmat.2019.06.045
20
H. Vidal, The principle of reinforced earth. Highway research record. 282 (1969). pp. 1-16. Available at: http://onlinepubs.trb.org/Onlinepubs/hrr/1969/282/282-001.pdf. 10.1093/nq/16-8-282a
21
J. Binquet and K.L. Lee, Bearing capacity tests on reinforced earth slabs. Journal of Geotechnical Engineering ASCE 101 (GT12). (1975), pp. 1241-1255. 10.1061/AJGEB6.0000219
22
R.J. Fragaszy and E. Lawton, Bearing Capacity of Reinforced Sand Subgrades. Journal of Geotechnical Engineering. 110(10) (1984), pp. 1500-1507. DOI: 10.1061/(ASCE)0733-9410(1984)110:10(1500). 10.1061/(ASCE)0733-9410(1984)110:10(1500)
23
C.C. Huang and F. Tatsuoka, Prediction of bearing capacity in level sandy ground reinforced with strip reinforcement. In International Geotechnical Symposium on Theory and Practice of Earth Reinforcement. (1988), pp. 191-196.
24
M.T. Adams and J.G. Collin, Large Model Spread Footing Load Tests on Geosynthetic Reinforced Soil Foundations. Journal of Geotechnical and Geoenvironmental Engineering. 123(1) (1997), pp. 66-72. DOI: 10.1061/(ASCE)1090-0241(1997)123:1(66). 10.1061/(ASCE)1090-0241(1997)123:1(66)
25
T.G. Sitharam and S. Sireesh, Model studies of embedded circular footing on geogrid-reinforced sand beds. Proceedings of the Institution of Civil Engineers - Ground Improvement. 8(2) (2004), pp. 69-75. DOI: 10.1680/grim.2004.8.2.69. 10.1680/grim.2004.8.2.69
26
M. Abu-farsakh, Q. Chen, and R. Sharma, An experimental evaluation of the behavior of footings on geosynthetic-reinforced sand. Soils and Foundations. 53(2) (2013), pp. 335-348. DOI: 10.1016/j.sandf.2013.01.001. 10.1016/j.sandf.2013.01.001
27
A. Ouria, A. Mahmoudi, and H. Sadeghpour, Effect of the Geotextile Arrangement on the Bearing Capacity of a Strip Footing. International Journal of Geosynthetics and Ground Engineering. 6(3) (2020), pp. 1-14. DOI: 10.1007/s40891-020-00219-w. 10.1007/s40891-020-00219-w
28
A. Kumar and S. Saran, Isolated strip footing on reinforced sand. Journal of Geotechnical Engineering, SEAGS. 32(3) (2001), pp.177-189.
29
E.C. Shin, B.M. Das, E.S. Lee, and C. Atalar, Bearing capacity of strip foundation on geogrid-reinforced sand. Geotechnical and Geological Engineering. 20 (2002), pp. 169-180. DOI: 10.1023/A:1015059427487.
30
A.K. Choudhary and A.M. Krishna, Experimental Investigation of Interface Behaviour of Different Types of Granular Soil/Geosynthetics. International Journal of Geosynthetics and Ground Engineering. 2(1) (2016), pp. 1-11. DOI: 10.1007/s40891-016-0044-8. 10.1007/s40891-016-0044-8
31
L. Al-subari, M. Hanafi, and A. Ekinci, Effect of geosynthetic reinforcement on the bearing capacity of strip footing on sandy soil. SN Applied Sciences. 2(9) (2020), pp. 1-11. DOI: 10.1007/s42452-020-03261-5. 10.1007/s42452-020-03261-5
32
H. Ahmad, A. Mahboubi, and A. Noorzad, A novel simple technique for determining the geogrid geometry affecting the bearing capacity of reinforced cohesive-frictional soil. Arabian Journal of Geosciences. 14(12) (2021), pp. 1-21. DOI: 10.1007/s12517-021-07399-3. 10.1007/s12517-021-07399-3
33
J. Wang, N.I. Hasan, A. Mohd Taib, N.S. Muhammad, M.R. Mat Yazid, A.A. Mutalib, and D.Z. Abang Hasbollah, Effectiveness of strip footing with geogrid reinforcement for different types of soils in Mosul, Iraq. Plos One. 15(12) (2020), e0243293. DOI: 10.1371/journal.pone.0243293. 10.1371/journal.pone.024329333332375PMC7746198
34
ASTM D2487-06, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, (2008). DOI: 10.1520/D2487-17. 10.1520/D2487-17
35
ASTM D4253-16, Standard test methods for maximum index density and unit weight of soils using a vibratory table. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, (2016). DOI: 10.1520/D4253-16E01.
36
ASTM D854-14, Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International, West Conshohocken, PA, (2014). DOI: 10.1520/D0854-14. 10.1520/D0854-14
37
ASTM D3080, Standard Test Methods for Direct Shear Test of Soils under Consolidated Drained Conditions. ASTM International, West Conshohocken, (2011). DOI: 10.1520/D3080-04.
38
N. Sahu, A. Biswas, and G.U. Kapure, A Short Review on Utilization of Ferrochromium Slag. Mineral Processing and Extractive Metallurgy Review. 37(4) (2016), pp. 211-219. DOI: 10.1080/08827508.2016.1168415. 10.1080/08827508.2016.1168415
39
P. Niemelä and M. Kauppi, Production, characteristics and use of ferrochromium slags. In: Innov. Ferro Alloy Ind. - Proc. XI Int. Conf. Innov. Ferro Alloy Ind. Infacon XI. (2007), pp. 171-179.
40
ASTM D4595-17, Standard test method for tensile properties of geotextiles by the wide-width strip method. Annual Book of ASTM Standards. ASTM International, West Conshohocken, PA, (2017). DOI: 10.1520/D4595-17. 10.1520/D4595-17
41
A.M. Namjoo, K. Jafari, and V. Toufigh, Effect of particle size of sand and surface properties of reinforcement on sand-geosynthetics and sand-carbon fiber polymer interface shear behavior. Transportation Geotechnics. 24 (2020). DOI: 10.1016/j.trgeo.2020.100403. 10.1016/j.trgeo.2020.100403
42
G.M. Latha and V.S. Murthy, Effects of reinforcement form on the behavior of geosynthetic reinforced sand. Geotextiles and Geomembranes. 25(1) (2007), pp. 23-32. DOI: 10.1016/j.geotexmem.2006.09.002. 10.1016/j.geotexmem.2006.09.002
43
A.A. Lavasan and M. Ghazavi, Behavior of closely spaced square and circular footings on reinforced sand. Soils and Foundations. 52(1) (2012), pp. 160-167. DOI: 10.1016/j.sandf.2012.01.006. 10.1016/j.sandf.2012.01.006
44
IS 1888, Method of load test on soils [CED 43: Soil and Foundation Engineering]. Indian Standard Institution, New Delhi, India, (1982).
45
V. Srinivasan and P. Ghosh, Experimental investigation on interaction problem of two nearby circular footings on layered cohesionless soil. Geomechanics and Geoengineering. 8(2) (2012), pp. 97-106. DOI: 10.1080/17486025.2012.695401. 10.1080/17486025.2012.695401
46
J. Kumar and M.K. Bhoi, Interference of Two Closely Spaced Strip Footings on Sand Using Model Tests. Journal of Geotechnical and Geoenvironmental Engineering. 135(4) (2009), pp. 595-604. DOI: 10.1061/(ASCE)1090-0241(2009)135:4(595). 10.1061/(ASCE)1090-0241(2009)135:4(595)
47
S.K. Yadav and S. Parihar, Experimental Study of the Behaviour of Footing on Reinforced Crusher Dust. Dogo Rangsang Research Journal. 10 (06) (2020), ISSN: 2347-7180.
48
A. Kumar and B.S. Walia, Bearing capacity of square footings on reinforced layered soil. Geotechnical and Geological Engineering. 24(4) (2006), pp. 1001-1008. DOI: 10.1007/s10706-005-8852-y. 10.1007/s10706-005-8852-y
49
V. Srinivasan and P. Ghosh, Experimental investigation on interaction problem of two nearby circular footings on layered cohesionless soil. Geomechanics and Geoengineering. 8(2) (2012), pp. 97-106. DOI: 10.1080/17486025.2012.695401. 10.1080/17486025.2012.695401
50
B.A. Mir and S. Ashraf, Evaluation of Load-Settlement Behaviour of Square Model Footings Resting on Geogrid Reinforced Granular Soils. In International Congress and Exhibition, Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology. (2019), pp. 103-126. DOI: 10.1007/978-3-030-01923-5_9. 10.1007/978-3-030-01923-5_9
51
J. Chen, X. Guo, R. Sun, S. Rajesh, S. Jiang, and J. Xue, Physical and numerical modelling of strip footing on geogrid reinforced transparent sand. Geotextiles and Geomembranes. 49(2) (2021), pp. 399-412. DOI: 10.1016/j.geotexmem.2020.10.011. 10.1016/j.geotexmem.2020.10.011
52
X. Guo, H. Zhang, and L. Liu, Planar geosynthetic-reinforced soil foundations: a review. SN Applied Sciences. 2(12) (2020), pp. 1-18. DOI: 10.1007/s42452-020-03930-5. 10.1007/s42452-020-03930-5
53
V.N.S. Murthy, Advanced foundation engineering. 2007, New Delhi: CBS publishers & distributors, pp. 113-115.
54
V.N. Khatri, S.P. Debbarma, R.K. Dutta, and B. Mohanty, Pressure-settlement behavior of square and rectangular skirted footings resting on sand. Geomechanics and Engineering. 12(4) (2017), pp. 689-705. DOI: 10.12989/gae.2017.12.4.689. 10.12989/gae.2017.12.4.689
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 13
  • No :4
  • Pages :436-453
  • Received Date : 2022-09-20
  • Accepted Date : 2022-12-13
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close