All Issue

2018 Vol.9, Issue 4 Preview Page

General Article

31 December 2018. pp. 258-265
Abstract
References
1
C.A. Hendriks, E. Worrell, D. de Jager, K. Blok, and P. Riemer, Emission reduction of greenhouse gases from the cement industry, In: Proceedings of the fourth International Conference on Greenhouse Gas Control Technologies (1998), pp. 939-944.
2
M. Taylor, C. Tam, and D. Gielen. Energy efficiency and CO2 emissions from the global cement industry, Korea 50 (2006), pp. 61-67.
3
A. Yilmaz and N. Degirmenci, Possibility of using waste tire rubber and fly ash with Portland cement as construction materials, Waste Manag 29 (2009), pp. 1541-1546, DOI: 10.1016/j.wasman.2008.11.002.
10.1016/j.wasman.2008.11.002
4
Misunderstanding and truth about cement, Korea Cement Association, 2006.
5
E. Kwon, J. Ahn, B. Cho, and D. Park, A study on development of recycled cement made from waste cementitious powder, Constr. Build. Mater. 83 (2015), pp. 174-180, DOI: 10.1016/j.conbuildmat.2015.02.086.
10.1016/j.conbuildmat.2015.02.086
6
J. Ahn and D. Park, The properties of raw temperature recycled cement using cementitious powder from concrete waste and industrial by-products, Journal of the Architectural Institute of Korea Structure and Construction 29 (2013), pp. 97-104.
7
M.T. Brown and V. Buranakarn, Emergy indices and ratios for sustainable material cycles and recycle options, Resour. Conserv. Recycl. 38 (2003), pp. 1-22.
10.1016/S0921-3449(02)00093-9
8
J. Kim, S. Tae, H. Song, and H. Shin, Theoretical proposal for the mix design of recycled cement utilizing inorganic construction wastes, Journal of the Korean Recycled Construction Resources Institute 4 (2016), pp. 250-258.
10.14190/JRCR.2016.4.3.250
9
M. Thomas, B. Lothenbach, and F.P. Glasser, Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O, Cem. Concr. Res. 37 (2007), pp. 1379-1410, DOI: 10.1016/j.cemconres.2007.06.002.
10.1016/j.cemconres.2007.06.002
10
C. Shi, A. Fernández Jiménez, and A. Palomo, New cements for the 21st century: the pursuit of an alternative to Portland cement, Cem. Concr. Res. 41 (2011), pp. 750-763, DOI: 10.1016/j.cemconres.2011.03.016.
10.1016/j.cemconres.2011.03.016
11
D.N. Huntzinger and T.D. Eatmon, A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies, J. Clean. Prod. 17 (2009), pp. 668-675.
10.1016/j.jclepro.2008.04.007
12
P.E. Tsakiridis, G.D. Papadimitriou, S. Tsivilis, and C. Koroneos, Utilization of steel slag for Portland cement clinker production, J. Hazard. Mater. 152 (2008), pp. 805-811, DOI: 10.1016/j.jhazmat.2007.07.093.
10.1016/j.jhazmat.2007.07.093
13
D.-Y. Oh, T. Noguchi, R. Kitagaki, and W.-J. Park, CO2 emission reduction by reuse of building material waste in the Japanese cement industry, Renew. Sustain. Energy Rev. 38 (2014), pp. 796-810, DOI: 10.1016/ j.rser.2014.07.036.
14
S. Suárez, X. Roca, and S. Gasso, Product-specific life cycle assessment of recycled gypsum as a replacement for natural gypsum in ordinary Portland cement: application to the Spanish context, J. Clean. Prod. 117 (2016), pp. 150-159, DOI: 10.1016/j.jclepro.2016.01.044.
10.1016/j.jclepro.2016.01.044
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 9
  • No :4
  • Pages :258-265
  • Received Date : 2018-12-05
  • Accepted Date : 2018-12-24
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close