General Article
A. Wagner, E. Gossauer, C. Moosmann, Th. Gropp, and R. Leonhart, Thermal comfort and workplace occupant satisfaction-Results of field studies in German low energy office buildings. Energy Build. 39(7) (2007), pp. 758-769. DOI: 10.1016/j.enbuild.2007.02.013.
10.1016/j.enbuild.2007.02.013R. de Dear, J. Kim, C. Candido, and M. Deuble, Adaptive thermal comfort in Australian school classrooms. Building Research & Information. 43(3) (2015), pp. 383-398. DOI: 10.1080/09613218.2015.991627.
10.1080/09613218.2015.991627S. Brasche and W. Bischof, Daily time spent indoors in German homes - Baseline data for the assessment of indoor exposure of German occupants. Int J Hyg Environ Health. 208(4) (2005), pp. 247-253. DOI: 10.1016/j.ijheh.2005.03.003.
10.1016/j.ijheh.2005.03.003T. Kuczyński and A. Staszczuk, Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings. Energy. 195 (2020), 116984, DOI: 10.1016/j.energy.2020.116984.
10.1016/j.energy.2020.116984N. Aqilah, H.B. Rijal, and S.A. Zaki, A Review of Thermal Comfort in Residential Buildings: Comfort Threads and Energy Saving Potential. Energies. 15(23) (2022). MDPI. DOI: 10.3390/en15239012.
10.3390/en15239012Reference number ISO 7730:2005(E) ISO 7730 Third edition ISO 7730:2005(E) PDF disclaimer [Online], 2005, Available at: www.iso.org.
S. Gangrade and A. Sharma, Study of thermal comfort in naturally ventilated educational buildings of hot and dry climate-A case study of Vadodara, Gujarat, India. International Journal of Sustainable Building Technology and Urban Development. 13(1) (2022), pp. 122-146. DOI: 10.22712/susb.20220010.
J.F. Nicol and M.A. Humphreys, Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings. 34(6) (2002), pp. 563-572.
10.1016/S0378-7788(02)00006-3ANSI/ASHRAE Addendum d to ANSI/ASHRAE Standard 55-2017 [Online], 2020, Available at: www.ashrae.org.
I.K. Kerfah, S.M.K. El Hassar, J. Rouleau, L. Gosselin, and A. Larabi, Analysis of strategies to reduce thermal discomfort and natural gas consumption during heating season in Algerian residential dwellings. International Journal of Sustainable Building Technology and Urban Development. 11(1) (2020), pp. 45-76. DOI: 10.22712/SUSB.20200005.
A.M. El-khiary, Energy saving through smart buildings innovative technologies: Simulation analysis for evaluating smart material of energy performance in Egypt. International Journal of Sustainable Building Technology and Urban Development. 12(3) (2021), pp. 232-250. DOI: 10.22712/SUSB.20210019.
J. Cho, J. Lee, W. Kim, and H. Shin, Comparison of subjective and objective thermal comfort of residuals according to office setting temperature changes. International Journal of Sustainable Building Technology and Urban Development. 11(4) (2020), pp. 258-268. DOI: 10.22712/SUSB.20200020.
A. Donato, R. Romano, and P. Gallo, Building performance assessment of a retrofitted case study in Florence. Lessons learned from current practices. International Journal of Sustainable Building Technology and Urban Development. 13(3) (2022), pp. 284-303. DOI: 10.22712/SUSB.20220023.
P. Datta, india-national-building-code-nbc-2016-vol-2.pdf. [Online], 2023, Available at: https://www.academia.edu/37343763/india_national_building_code_nbc_2016_vol_2_pdf [Accessed 15/02/2023].
SP 41: Handbook on Functional Requirements of Buildings (Other than Industrial Buildings): Bureau of Indian Standards : Free Download, Borrow, and Streaming: Internet Archive [Online], 1987. Available at: https://archive.org/details/gov.in.is.sp.41.1987 [Accessed 15/02/2023].
R. Yao, S. Zhang, C. Du, M. Schweiker, S. Hodder, B.W. Olesen, J. Toftum, F.R. d'Ambrosio, H. Gebhardt, S. Zhou, F. Tuan, and B. Li, Evolution and performance analysis of adaptive thermal comfort models - A comprehensive literature review. Build Environ. 217 (2022). DOI: 10.1016/J.BUILDENV.2022.109020.
10.1016/j.buildenv.2022.109020R. Rawal, Y. Shukla, V. Vardhan, S. Asrani, M. Schweiker, R. de Dear, V. Garg, J. Mathur, S. Prakash, S. Diddi, S.V. Ranjan, A.N. Siddiqui, and G. Somani, Adaptive thermal comfort model based on field studies in five climate zones across India. Build Environ. 219 (2022), 109187. DOI: 10.1016/J.BUILDENV.2022.109187.
10.1016/j.buildenv.2022.109187S. Kumar, Subject's thermal adaptation in different built environments: An analysis of updated metadata-base of thermal comfort data in India. Journal of Building Engineering, 46 (2022), 103844. DOI: 10.1016/J.JOBE.2021.103844.
10.1016/j.jobe.2021.103844P. Tewari, S. Mathur, J. Mathur, S. Kumar, and V. Loftness, Field study on indoor thermal comfort of office buildings using evaporative cooling in the composite climate of India. Energy Build. 199 (2019), pp. 145-163. DOI: 10.1016/J.ENBUILD.2019.06.049.
10.1016/j.enbuild.2019.06.049S. Manu, Y. Shukla, R. Rawal, L.E. Thomas, and R. de Dear, Field studies of thermal comfort across multiple climate zones for the subcontinent: India Model for Adaptive Comfort (IMAC). Build Environ. 98 (2016), pp. 55-70. DOI: 10.1016/j.buildenv.2015.12.019.
10.1016/j.buildenv.2015.12.019M. Indraganti, R. Ooka, H.B. Rijal, and G.S. Brager, Adaptive model of thermal comfort for offices in hot and humid climates of India. Build Environ. 74 (2014), pp. 39-53. DOI: 10.1016/J.BUILDENV.2014.01.002.
10.1016/j.buildenv.2014.01.002M. Indraganti, R. Ooka, and H.B. Rijal, Field investigation of comfort temperature in Indian office buildings: A case of Chennai and Hyderabad. Build Environ. 65 (2013), pp. 195-214. DOI: 10.1016/J.BUILDENV.2013.04.007.
10.1016/j.buildenv.2013.04.007S. Dhaka, J. Mathur, G. Brager, and A. Honnekeri, Assessment of thermal environmental conditions and quantification of thermal adaptation in naturally ventilated buildings in composite climate of India. Build Environ. 86 (2015), pp. 17-28. DOI: 10.1016/J.BUILDENV.2014.11.024.
10.1016/j.buildenv.2014.11.024S. Dhaka, J. Mathur, A. Wagner, G. das Agarwal, and V. Garg, Evaluation of thermal environmental conditions and thermal perception at naturally ventilated hostels of undergraduate students in composite climate. Build Environ. 66 (2013), pp. 42-53. DOI: 10.1016/J.BUILDENV.2013.04.015.
10.1016/j.buildenv.2013.04.015A. Sarkar, Study of Climate Responsive Passive Design Features in Traditional Hill Architecture of Khyah Village in Hamirpur, Himachal Pradesh, India for Indoor Thermal Comfort. Journal of The Institution of Engineers (India): Series A. 94(1) (2013), pp. 59-72. DOI: 10.1007/s40030-013-0033-z.
10.1007/s40030-013-0033-zM. Kottek, J. Grieser, C. Beck, B. Rudolf, and F. Rubel, World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift. 15(3) (2006), pp. 259-263. DOI: 10.1127/0941-2948/2006/0130.
10.1127/0941-2948/2006/0130Hamirpur, Himachal Pradesh, IN Climate Zone, Monthly Averages, Historical Weather Data [Online], 2023. Available at: https://tcktcktck.org/india/himachal-pradesh/hamirpur [Accessed 20/03/2023].
CensusInfo, Housing, Household Amenities and Assets Database (ver. 2.0). Census of India, 2011. Govt. of India.
Hamirpur district - Wikidata [Online], 2023. Available at: https://www.wikidata.org/wiki/Q2086180 [Accessed 05/04/2023].
A. Sharma and B.M. Marwaha, A methodology for energy performance classification of residential building stock of Hamirpur. HBRC Journal. 13(3) (2017), pp. 337-352. DOI: 10.1016/j.hbrcj.2015.11.003.
10.1016/j.hbrcj.2015.11.003A. Sharma and B.M. Marwaha, A methodology for energy performance classification of residential building stock of Hamirpur. HBRC Journal. 13(3) (2017), pp. 337-352. DOI: 10.1016/j.hbrcj.2015.11.003.
10.1016/j.hbrcj.2015.11.003S.S. Chandel, A. Sharma, and B.M. Marwaha, Review of energy efficiency initiatives and regulations for residential buildings in India. Renewable and Sustainable Energy Reviews. 54 (2016). Elsevier Ltd., pp. 1443-1458. DOI: 10.1016/j.rser.2015.10.060.
10.1016/j.rser.2015.10.060M.A. Humphreys and N.J. Fergus, Do people like to feel 'neutral'? Response to the ASHRAE scale of subjective warmth in relation to thermal preference, indoor and outdoor temperature [Online], 2004. Available at: https://www.aivc.org/resource/do-people-feel-neutral-response-ashrae-scale-subjective-warmth-relation-thermal-preference [Accessed 21/03/2023].
Y. Zhu, Q. Ouyang, B. Cao, X. Zhou, and J. Yu, Dynamic thermal environment and thermal comfort. Indoor Air. 26(1) (2016), pp. 125-137. DOI: 10.1111/INA.12233.
10.1111/ina.12233Y. Yang, R. Yao, B. Li, H. Liu, and L. Jiang, A method of evaluating the accuracy of human body thermoregulation models. Build Environ. 87 (2015), pp. 1-9. DOI: 10.1016/J.BUILDENV.2015.01.013.
10.1016/j.buildenv.2015.01.013X. Du, B. Liu, D. Yang, W. Yu, J. Liao, Z. Huang, and K. Xia, The response of human thermal sensation and its prediction to temperature step-change (cool-neutral-cool). PLoS One. 9(8) (2014). DOI: 10.1371/JOURNAL.PONE.0104320.
10.1371/journal.pone.0104320- Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
- Publisher(Ko) :건설구조물 내구성혁신 연구센터
- Journal Title :International Journal of Sustainable Building Technology and Urban Development
- Volume : 15
- No :3
- Pages :285-306
- Received Date : 2023-04-12
- Accepted Date : 2023-06-23
- DOI :https://doi.org/10.22712/susb.20240022