All Issue

2021 Vol.12, Issue 2

General Article

30 June 2021. pp. 80-95
Abstract
References
1
G. Atkinson, A century of defects. Building. (1987), pp. 54-55.
2
C. Pereira, J. de Brito, and J.D. Silvestre, Contribution of humidity to the degradation of façade claddings in current buildings. Engineering Failure Analysis. 90 (2018), pp. 103-115. 10.1016/j.engfailanal.2018.03.028
3
J. Guo, Q. Wang, Y. Li, and P. Liu, Façade defects classification from imbalanced dataset using meta learning‐based convolutional neural network. Computer‐Aided Civil and Infrastructure Engineering. 35(12) (2020), pp. 1403-1418. 10.1111/mice.12578
4
A. Aïssani, A. Chateauneuf, J.P. Fontaine, and P. Audebert, Quantification of workmanship insulation defects and their impact on the thermal performance of building facades. Applied Energy. 165 (2016), pp. 272-284. 10.1016/j.apenergy.2015.12.040
5
E. Bauer, E. Kraus, M.N. Silva, and V.A. Zanoni, Evaluation of damage of building facades in Brasília. In XIII DBMC-International Conference on Durability of Building Materials and Components. 1 (2014), pp. 535-542.
6
J. Zhang, C. Lu, J. Wang, L. Wang, and X.G. Yue, Concrete cracks detection based on FCN with dilated convolution. Applied Sciences. 9(13) (2019), pp. 2686. 10.3390/app9132686
7
K. Lee, G. Hong, L. Sael, S. Lee, and H.Y. Kim, MultiDefectNet: Multi-Class Defect Detection of Building Façade Based on Deep Convolutional Neural Network. Sustainability. 12(22) (2020), pp. 9785. 10.3390/su12229785
8
S. Kim, D.M. Frangopol, and M. Soliman, Generalized probabilistic framework for optimum inspection and maintenance planning. Journal of Structural Engineering. 139(3) (2013), pp. 435-447. 10.1061/(ASCE)ST.1943-541X.0000676
9
A. Santos, M. Vicente, J. De Brito, I. Flores-Colen, and A. Castelo, Inspection, diagnosis, and rehabilitation system of door and window frames. Journal of Performance of Constructed Facilities. 31(3) (2017), pp. 04016118. 10.1061/(ASCE)CF.1943-5509.0000992
10
R. Bortolini and N. Forcada, A probabilistic performance evaluation for buildings and constructed assets. Building Research & Information. 48(8) (2020), pp. 838-855. 10.1080/09613218.2019.1704208
11
Y.J. Yan, L. Cheng, Z.Y. Wu, and L.H. Yam, Development in vibration-based structural damage detection technique. Mechanical systems and signal processing. 21(5) (2007), pp. 2198-2211. 10.1016/j.ymssp.2006.10.002
12
W.L. Bayissa, N. Haritos, and S. Thelandersson, Vibration-based structural damage identification using wavelet transform. Mechanical systems and signal processing. 22(5) (2008), pp. 1194-1215. 10.1016/j.ymssp.2007.11.001
13
X. Kong, C.S. Cai, and J. Hu, The state-of-the-art on framework of vibration-based structural damage identification for decision making. Applied Sciences. 7(5) (2017), pp. 497. 10.3390/app7050497
14
H. Sun and O. Büyüköztürk, Optimal sensor placement in structural health monitoring using discrete optimization. Smart Materials and Structures. 24(12) (2015), pp. 125034. 10.1088/0964-1726/24/12/125034
15
S. Nishiyama, N. Minakata, T. Kikuchi, and T. Yano, Improved digital photogrammetry technique for crack monitoring. Advanced Engineering Informatics. 29(4) (2015), pp. 851-858. 10.1016/j.aei.2015.05.005
16
K.W. Liao and D.R. Cheng, Restoration of the distorted color to detect the discoloration status of a steel bridge coating using digital image measurements. Advanced Engineering Informatics. 33 (2017), pp. 96-111. 10.1016/j.aei.2017.04.005
17
Y.J. Cha, W. Choi, and O. Büyüköztürk, Deep learning-based crack damage detection using convolutional neural networks. Computer‐Aided Civil and Infrastructure Engineering. 32(5) (2017), pp. 361-378. 10.1111/mice.12263
18
C.M. Yeum and S.J. Dyke, Vision‐based automated crack detection for bridge inspection. Computer‐Aided Civil and Infrastructure Engineering. 30(10) (2015), pp. 759-770. 10.1111/mice.12141
19
M. Wang and J.C. Cheng, A unified convolutional neural network integrated with conditional random field for pipe defect segmentation. Computer‐Aided Civil and Infrastructure Engineering. 35(2) (2020), pp. 162-177. 10.1111/mice.12481
20
M. Wang, S.S. Kumar, and J.C. Cheng, Automated sewer pipe defect tracking in CCTV videos based on defect detection and metric learning. Automation in Construction. 121 (2021), pp. 103438. 10.1016/j.autcon.2020.103438
21
G. Hinton, O. Vinyals, and J. Dean, Distilling the knowledge in a neural network. arXiv preprint arXiv:1503. 02531. (2015).
22
A. Romero, N. Ballas, S.E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550. (2014).
23
G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, Learning efficient object detection models with knowledge distillation. In Advances in neural information processing systems. (2017), pp. 742-751.
24
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition. (2016), pp. 779-788. 10.1109/CVPR.2016.91
25
R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition. (2014), pp. 580-587. 10.1109/CVPR.2014.81
26
Zero to Hero: Guide to Object Detection using Deep Learning: Faster R-CNN, YOLO, SSD, CV-Tricks.com. https://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/.
27
S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE transactions on pattern analysis and machine intelligence. 39(6) (2016), pp. 1137-1149. 10.1109/TPAMI.2016.2577031
28
K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. (2016), pp. 770-778. 10.1109/CVPR.2016.90
29
S. Ruder, An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747. (2016).
30
T.Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, (2017), pp. 2117-2125. 10.1109/CVPR.2017.106
31
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.C. Chen, Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, (2018), pp. 4510-4520. 10.1109/CVPR.2018.00474
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 12
  • No :2
  • Pages :80-95
  • Received Date : 2021-02-02
  • Accepted Date : 2021-03-17
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close