All Issue

2022 Vol.13, Issue 3 Preview Page

General Article

30 September 2022. pp. 328-348
W.S. Moustafa, I.R. Hegazy, and M.M. Eldabousy, Roof geometry as a factor of thermal behavior: simulation- based study of using vaults and domes in the Middle East zone. International Journal of Low-Carbon Technologies. 13(3) (2018), pp. 204-211, DOI: 10.1093/ijlct/cty016.
M. Funari, L. Silva, E. Mousavian, and P. Lourenço, Real-time Structural Stability of Domes through Limit Analysis: Application to St. Peter's Dome. International Journal of Architectural Heritage. (2021). DOI: 10.1080/15583058.2021.19. 10.1080/15583058.2021.1992539
A. Peterson, The Dictionary of Islamic Architecture. 1996, Routledge. ISBN 978-0-203-20387-3.
S. Sadeqi, A. Ekhlassi, and S. Norouzian-Maleki, An analysis of structural aesthetics in architecture case study: Taj-Ol-Molk Dome, Jāmeh Mosque of Isfahan, Iran. SN Applied Sciences, 1 (2019), pp. 1-10. 10.1007/s42452-019-0558-5
M. Kayili, "Acoustic Solutions in Classic Ottoman Architecture" (PDF). FSTC (Foundation for Science Technology and Civilisation) Limited. (2005), pp. 1-15. 4087.
M. Mahdavinejad, N. Badri, M. Fakhari, and M. Haqshenas, The Role of Domed Shape Roofs in Energy Loss at Night in Hot and Dry Climate (Case Study: Isfahan Historical Mosques Domes in Iran). American Journal of Civil Engineering and Architecture. 1(6) (2013), pp. 117-121. DOI: 10.12691/ajcea-1-6-1. 10.12691/ajcea-1-6-1
Z. Soleimani and J. Calautit, Climatic analysis of ventilation and thermal performance of a dome building with roof vent. Engineering Sustainability. 171(8) (2018). DOI: 10.1680/jensu.16.00018.
R. Abraham and G. Chandran, Study of Dome structures with specific Focus on Monolithic and Geodesic Domes for Housing. International Journal of Emerging Technology and Advanced Engineering, 6(8) (2016).
M. Hadavand and M. Yaghoubi , Thermal behavior of curved roof buildings exposed to solar radiation and wind flow for various orientations. Appl Energy. 85 (2008), pp. 663-679. 10.1016/j.apenergy.2008.01.002
R. Tang, I.A. Meir, and T. Wu, Thermal performance of non-air-conditioned building with vaulted roofs in comparison with flat roofs. Build Environ. 41 (2006), pp. 268-276. 10.1016/j.buildenv.2005.01.008
E.I. Aghimien, D.H.W. Li, W. Chen, and E.K.W. Tsang, Daylight luminous efficacy: An overview. Solar Energy, 228 (2021), pp. 706-724, DOI: 10.1016/j.solener.2021.05.018.
G. Sadeghi, R. Mokhtarshahi Sani, and Y. Wang, Symbolic Meaning of Transparency in Contemporary Architecture: An Evaluation of Recent Public Buildings in Famagusta. Current Urban Studies. 3(4) (2015). 10.4236/cus.2015.34030
A. Irakoze, Y. Lee, and K. Kim, An Evaluation of the Ceiling Depth's Impact on Skylight Energy Performance Predictions Through a Building Simulation. Sustainability. 12 (2020), 3117. DOI: 10.3390/su12083117. 10.3390/su12083117
A. Sepúlveda, F. De Luca, and J. Kurnitski, Daylight and overheating prediction formulas for building design in a cold climate. Journal of Building Engineering. 45 (2022). 10.1016/j.jobe.2021.103532
A. Belakehal, K. Tabet Aoul, and A. Farhi, Daylight as a Design Strategy in the Ottoman Mosques of Tunisia and Algeria. International Journal of Architectural Heritage. 10(6) (2016). 10.1080/15583058.2015.1020458
S. Panahiazar and M. Matkan, Qualitative and quantitative analysis of natural light in the dome of San Lorenzo, Turin. Frontiers of Architectural Research. 7(1) (2018). 10.1016/j.foar.2017.11.005
E. Aljofi, The Potentiality of Domes on Provision of Daylight in Mosques. International Journal of Applied Engineering Research. 13(7) (2018), pp. 5103-5112.
A. Sanusi Hassan and Y. Arab, Analysis of Lighting Performance between Single Dome and Pyramid Roof Mosque in Mostar, Bosnia Herzegovina. Procedia - Social and Behavioral Sciences. 91 (2013), pp. 1-12. 10.1016/j.sbspro.2013.08.395
A. Chel, Performance of skylight illuminance inside a dome shaped adobe house under composite climate at New Delhi (India): A typical zero energy passive house. Alexandria Engineering Journal. 53 (2014), pp. 385-397. 10.1016/j.aej.2014.01.006
K. Al-Obaidi, M. Ismail, and A. Abdul Rahman, Assessing the allowable daylight illuminance from skylights in single-story buildings in Malaysia: a review. International Journal of Sustainable Building Technology and Urban Development. 6(4) (2015), pp. 236-248. DOI: 10.1080/2093761X.2015.1129369
G. Steffy, Architectural Lighting Design. 2001, John Wiley & Sons, New Jersey, USA.
T. Mavridou and L. Doulos, Evaluation of Different Roof Types Concerning Daylight in Industrial Buildings during the Initial Design Phase: Methodology and Case Study. Buildings. 9 (2019), 170. DOI: 10.3390/ buildings9070170 10.3390/buildings9070170
I. Acosta, J. Navarro, J. Sendra, and P. Esquivias, Daylighting design with lightscoop skylights: Towards an optimization of proportion and spacing under overcast sky conditions. Energy and Buildings. 49 (2012), pp. 394-401. 10.1016/j.enbuild.2012.02.038
W. El-Abd, B. Kamel, M. Afify, and M. Dorra, Assessment of skylight design configurations on daylighting performance in shopping malls: A case study. Solar Energy. 170 (2018), pp. 358-368, 10.1016/j.solener.2018.05.052.
G. Henriques, J. Duarte, and V. Leal, Strategies to control daylight in a responsive skylight system. Automation in Construction. 28 (2012), pp. 91-105. 10.1016/j.autcon.2012.06.002
Q. Kwong, Light level, visual comfort and lighting energy savings potential in a green-certified high-rise building. Journal of Building Engineering. 29 (2020), 101198, DOI: 10.1016/j.jobe.2020.101198.
M. Ahmed Sayed and M. Fikry, Impact of glass facades on internal environment of buildings in hot arid zone. Alexandria Engineering Journal. 58(3) (2019), pp. 1063-1075, DOI: 10.1016/j.aej.2019.09.009.
IEA (The international Energy Agency). 2010. Daylighting in building. UK: AECOM.
A. Eltaweel, M. Alaa Mandour, Q. Lv, and Y. Sua, Daylight Distribution Improvement Using Automated Prismatic Louvre. Journal of Daylighting. 7 (2020), pp. 84-92. 10.15627/jd.2020.7
V. Shemelin, T. Matuska, B. Sourek, and V. Jirka, Energy savings potential from prismatic glass structure. E3S Web of Conferences. 167 (2020), 06004. 10.1051/e3sconf/202016706004
S. Yeh, A natural lighting system using a prismatic daylight collector. Lighting Research & Technology. 46(5) (2014). 10.1177/1477153514523637
Z. Tian, Y. Lei, Y. Wang, J. Wu1, Y. Zou, and L. Meng, Daylight illuminance with prismatic film glazing in a factory building. IOP Conf. Series: Earth and Environmental Science. 153 (2018), 052061. DOI: 10.1088/ 1755-1315/153/5/052061 10.1088/1755-1315/153/5/052061
I. Mashaly, K. Nassar, and S. El-Haggar, Mathematical model for designing a light redirecting prismatic panel. Solar Energy. 159 (2018), pp. 638-649, DOI: 10.1016/j.solener.2017.11.014.
A. Vlachokostas and N. Madamopoulos, Daylight and thermal harvesting performance evaluation of a liquid filled prismatic façade using the Radiance five-phase method and EnergyPlus. Building and Environment. 126 (2017), pp. 396-409. 10.1016/j.buildenv.2017.10.017
G. Courret, B. Paule, and J.L. Scartezzini, Anidolic zenithal openings: Daylighting and shading. International Journal of Lighting Research and Technology. 28(1) (1996), pp. 11-17. 10.1177/14771535960280010201
C. Simone, G. Molteni, B. Courret, L. Paule, J.L. Michel, and Scartezzini, Design of anidolic zenithal lightguides for daylighting of underground spaces. Solar Energy. 69(6) (2001), pp. 117-129, DOI: 10.1016/S0038-092X(01)00065-2.
F. Linhart, S. Wittkopf, and J. Scartezzini, Performance of Anidolic Daylighting Systems in tropical climates - Parametric studies for identification of main influencing factors. Solar Energy. 84(7) (2010), pp. 1085-1094, DOI: 10.1016/j.solener.2010.01.014.
J. Scartezzini and G. Courret, Anidolic daylighting systems. Solar Energy. 73(2) (2002), pp. 123-135, DOI: 10.1016/S0038-092X(02)00040-3.
S. Wittkopf, E. Yuniarti, and S. Kuan, Prediction of energy savings with anidolic integrated ceiling across different daylight climates. Energy and Buildings. 38(9) (2006), pp. 1120-1129, DOI: 10.1016/j.enbuild.2006.01.005.
M. Collados, D. Chemisana, and J. Atencia, Holographic solar energy systems: The role of optical elements. Renewable and Sustainable Energy Reviews. 59 (2016), pp. 130-140, DOI: 10.1016/j.rser.2015.12.260.
P.A.B. James and A.S. Bahaj, Holographic optical elements: various principles for solar control of conservatories and sunrooms. Solar Energy. 78(3) (2005), pp. 441-454, DOI: 10.1016/j.solener.2004.05.022.
J. Marín-Sáez, D. Chemisana, Á. Moreno, A. Riverola, J. Atencia, and M.-V. Collados, Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications. Energies. 9(8) (2016), 577. DOI: 10.3390/EN9080577
I.R. Edmonds and P.J. Greenup, Daylighting in the tropics. Solar Energy. 73(2) (2002), pp. 111-121, DOI: 10.1016/S0038-092X(02)00039-7.
P.J. Greenup and I.R. Edmonds, Test room measurements and computer simulations of the micro-light guiding shade daylight redirecting device. Solar Energy. 76(1-3) (2004), pp. 99-109, 10.1016/j.solener.2003.08.018.
F. Hammad and B. Abu-Hijleh, The energy savings potential of using dynamic external louvers in an office building. Energy and Buildings. 42(10) (2010), pp. 1888-1895, DOI: 10.1016/j.enbuild.2010.05.024.
A. Hashemi, Daylighting and solar shading performances of an innovative automated reflective louvre system. Energy and Buildings. 82 (2014), pp. 607-620, DOI: 10.1016/j.enbuild.2014.07.086.
K. Konis and E. Lee, Measured daylighting potential of a static optical louver system under real sun and sky conditions. Building and Environment. 92 (2015), pp. 347-359, DOI: 10.1016/j.buildenv.2015.04.024.
T. Kazanasmaz, L. Grobe, C. Bauer, M Krehel, and S. Wittkopf, Three approaches to optimize optical properties and size of a South-facing window for spatial Daylight Autonomy. Building and Environment. 102 (2016), pp. 243-256, DOI: 10.1016/j.buildenv.2016.03.018.
Y. Cai, Y. Nan, and Z. Guo, Enhanced absorption of solar energy in a daylighting louver with Ni-water nanofluid. International Journal of Heat and Mass Transfer. 158 (2020), DOI:  10.1016/j.ijheatmasstransfer.2020.119921.
A. Freewan, L. Shao, and S. Riffat, Interactions between louvers and ceiling geometry for maximum daylighting performance. Renewable Energy. 34(1) (2009), pp. 223-232, DOI: 10.1016/j.renene.2008.03.019.
F. Hernández, J. López, J. Suárez, M. Muriano, and S. Rueda, Effects of louvers shading devices on visual comfort and energy demand of an office building. A case of study. Energy Procedia. 140 (2017), pp. 207-216. 10.1016/j.egypro.2017.11.136
A. Soler and P. Oteiza, Dependence on solar elevation of the performance of a light shelf as a potential daylighting device. Renew. Energy. 8 (1996), pp. 198-201. 10.1016/0960-1481(96)88845-8
S.T. Claros and A. Soler, Indoor daylight climate-influence of light shelf and model reflectance on light shelf performance in Madrid for hours with unit sunshine fraction. Build. Environ. 37 (2002), pp. 587-598. 10.1016/S0360-1323(01)00074-9
C. Kurtay and O. Esen, A new method for light shelf design according to latitudes: Cun-okay light shelf curves. J. Build. Eng. 10 (2017), pp. 140-148. 10.1016/j.jobe.2017.02.008
U. Berardi and H.K. Anaraki, Analysis of the impacts of light shelves on the useful daylight illuminance in office buildings in Toronto. Energy Procedia. 78 (2015), pp. 1793-1798. 10.1016/j.egypro.2015.11.310
U. Berardi and H.K. Anaraki, The benefits of light shelves over the daylight illuminance in office buildings in Toronto. Indoor Built Environ. 27 (2018), pp. 244-262. 10.1177/1420326X16673413
A. Meresi, Evaluating daylight performance of light shelves combined with external blinds in south-facing classrooms in Athens, Greece. Energy Build. 116 (2016), pp. 190-205. 10.1016/j.enbuild.2016.01.009
H. Lee, K. Kim, J. Seo, and Y. Kim, Effectiveness of a perforated light shelf for energy saving. Energy Build. 144 (2017), pp. 144-151. 10.1016/j.enbuild.2017.03.008
H. Lee, Performance evaluation of a light shelf with a solar module based on the solar module attachment area. Build. Environ. 159 (2019), 106161. 10.1016/j.buildenv.2019.106161
H. Lee, J. Seo, and C. Choi, Preliminary study on the performance evaluation of a light shelf based on reflector curvature. Energies. 12 (2019), 4295. 10.3390/en12224295
H. Lee and J. Seo, Performance evaluation of external light shelves by applying a prism sheet. Energies. 13 (2020), 4618. 10.3390/en13184618
H. Lee, A basic study on the performance evaluation of a movable light shelf with a rolling reflector that can change reflectivity to improve the visual environment. Int. J. Environ. Res. Public Health. 17 (2020), 8338. 10.3390/ijerph1722833833187274PMC7696370
H. Lee, X. Zhao, and J. Seo, A study of optimal specifications for light shelves with photovoltaic modules to improve indoor comfort and save building energy. Int. J. Environ. Res. Public Health. 18 (2021), 2574. 10.3390/ijerph1805257433806602PMC7967301
A. Ávila-Zamora and N. Murillo-Quirós, Effect of Light Distribution in a Scale Model Due to Different Light Shelves. Tecnología en Marcha. 8 (2020), pp. 17-25.
N. Sadaf, K. Humaira, and A. Abrar, A comparative study on daylight performance assessment of light shelves based on inclination. Mehran Univ. Res. J. Eng. Technol. 39 (2020), pp. 800-805. 10.22581/muet1982.2004.12
S. Ruggiero, Assimakopoulos, R.F. De Masi, F. de Rossi, A. Fotopoulou, D. Papadaki, G.P. Vanoli, and A. Ferrante, Multi-disciplinary analysis of light shelves application within a student dormitory refurbishment. Sustainability. 13 (2021), 8251. 10.3390/su13158251
Y. Sun, R. Liang, Y. Wu, R. Wilson, and P. Rutherford, Glazing systems with Parallel Slats Transparent Insulation Material (PS-TIM): Evaluation of building energy and daylight performance. Energy and Buildings. 159 (2018), pp. 213-227, DOI: 10.1016/j.enbuild.2017.10.026.
C.H. Davila and F. Fiorito, On the combined use of laser-cut panel light redirecting systems and horizontal blinds for daylighting and solar heat control, a focus on visual comfort objectives. Solar Energy. 230 (2021), pp. 186-194, DOI: 10.1016/j.solener.2021.09.071.
I.R. Edmonds and D.J. Pearce, Enhancement of crop illuminance in high latitude greenhouses with laser-cut panel glazing. Solar Energy. 66(4) (1999), pp. 255-265. DOI: 10.1016/S0038-092X(99)00030-4.
G. Courret and J.-L. Scartezzini, Anidolic Solar Blinds - Sun Control with Three-dimensional Optics. 1998, Euro Sun'98 - The Second ISES Europe Solar Congress - Slovenia.
A. Ahadi, M. Saghafi, and M. Tahbaz, The study of effective factors in daylight performance of light-wells with dynamic daylight metrics in residential buildings. Solar Energy. 155 (2017), pp. 679-697, DOI: 10.1016/j.solener.2017.07.005.
C.F. Reinhart and J. Wienold, The daylighting dashboard a simulation-based design analysis for daylit spaces. BuildEnviro. 46 (2011), pp. 386-396. 10.1016/j.buildenv.2010.08.001
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 13
  • No :3
  • Pages :328-348
  • Received Date :2022. 05. 12
  • Accepted Date : 2022. 09. 24
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close