All Issue

2022 Vol.13, Issue 2 Preview Page

General Article

30 June 2022. pp. 198-220
Abstract
References
1
P.K. Katiyar, S. Misra, and K. Mondal, Corrosion Behavior of Annealed Steels with Different Carbon Contents (0.002, 0.17, 0.43 and 0.7% C) in Freely Aerated 3.5% NaCl Solution. J. Mater. Eng. Perform. 28 (2019), pp. 4041-4052. doi:10.1007/s11665-019-04137-5. 10.1007/s11665-019-04137-5
2
P.K. Katiyar, S. Misra, and K. Mondal, Effect of Different Cooling Rates on the Corrosion Behavior of High-Carbon Pearlitic Steel. J. Mater. Eng. Perform. 27 (2018). doi:10.1007/s11665-018-3256-3. 10.1007/s11665-018-3256-3
3
P.K. Katiyar, S. Misra, and K. Mondal, Comparative Corrosion Behavior of Five Microstructures (Pearlite, Bainite, Spheroidized, Martensite, and Tempered Martensite) Made from a High Carbon Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 50 (2019), pp. 1489-1501. doi:10.1007/s11661-018-5086-1. 10.1007/s11661-018-5086-1
4
Neetu, P.K. Katiyar, S. Sangal, and K. Mondal, Effect of various phase fraction of bainite, intercritical ferrite, retained austenite and pearlite on the corrosion behavior of multiphase steels. Corros. Sci. 178 (2021), 109043. doi:10.1016/j.corsci.2020.109043. 10.1016/j.corsci.2020.109043
5
W.S. Tait, An introduction to electrochemical corrosion testing for practicing engineers and scientists. Prog. Org. Coatings. 26 (1995), pp. 37-42. doi:10.1016/0300-9440(95)90005-5. 10.1016/0300-9440(95)90005-5
6
X. Hao, J. Dong, I.I.N. Etim, J. Wei, and W. Ke, Sustained effect of remaining cementite on the corrosion behavior of ferrite-pearlite steel under the simulated bottom plate environment of cargo oil tank. Corros. Sci. 110 (2016), pp. 296-304. doi:10.1016/j.corsci.2016.04.042. 10.1016/j.corsci.2016.04.042
7
P.A. Itty, M. Serdar, C. Meral, D. Parkinson, A.A. MacDowell, D. Bjegović, and P.J.M. Monteiro, In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste. Corros. Sci. 83 (2014), pp. 409-418. 10.1016/j.corsci.2014.03.010
8
S. Kahl, Corrosion Resistant Alloy Steel (MMFX) Reinforcing Bar in Bridge Decks, (2007) 36p. http://www. michigan.gov/documents/mdot/MDOT_Research_Report_R1499_209781_7.pdf.
9
D.N. Staicopolus, The Role of Cementite in the Acidic Corrosion of Steel. J. Electrochem. Soc. 110 (1963) pp. 1121-1124. 10.1149/1.2425602
10
G.P. Singh, A.P. Moon, S. Sengupta, G. Deo, S. Sangal, and K. Mondal, Corrosion Behavior of IF Steel in Various Media and Its Comparison with Mild Steel. J. Mater. Eng. Perform. 24 (2015), pp. 1961-1974. doi:10.1007/ s11665-015-1448-7. 10.1007/s11665-015-1448-7
11
J. Wei, J. Dong, Y. Zhou, X. He, C. Wang, and W. Ke, Influence of the secondary phase on micro galvanic corrosion of low carbon bainitic steel in NaCl solution. Mater. Charact. 139 (2018), pp. 401-410. 10.1016/j.matchar.2018.03.021
12
P.K. Katiyar, P.K. Behera, S. Misra, and K. Mondal, Effect of Microstructures on the Corrosion Behavior of Reinforcing Bars (Rebar) Embedded in Concrete, Met. Mater. Int. 25 (2019). doi:10.1007/s12540-019-00288-1. 10.1007/s12540-019-00288-1
13
A.P. Moon, S. Sangal, S. Srivastav, N.S. Gajbhiye, and K. Mondal, Passivation and Corrosion Behavior of Modified Ferritic-Pearlitic Railway Axle Steels. J. Mater. Eng. Perform. 24 (2015), pp. 85-97. doi:10.1007/s11665-014- 1252-9. 10.1007/s11665-014-1252-9
14
W.R. Osório, L.C. Peixoto, L.R. Garcia, and A. Garcia, Electrochemical corrosion response of a low carbon heat-treated steel in a NaCl solution. Mater. Corros. 60 (2009), pp. 804-812. 10.1002/maco.200805181
15
J. Yang, Y. Lu, Z. Guo, J. Gu, and C. Gu, Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution. Corros. Sci. 130 (2018), pp. 64-75. doi:10.1016/j.corsci.2017.10.027. 10.1016/j.corsci.2017.10.027
16
P.K. Katiyar, P.K. Behera, S. Misra, and K. Mondal, Effect of Microstructures on the Corrosion Behavior of Reinforcing Bars (Rebar) Embedded in Concrete. Met. Mater. Int. 25 (2019), pp. 1209-1226. doi:10.1007/ s12540-019-00288-1. 10.1007/s12540-019-00288-1
17
P.K. Katiyar, P.K. Behera, S. Misra, and K. Mondal, Comparative Corrosion Behavior of Five Different Microstructures of Rebar Steels in Simulated Concrete Pore Solution with and Without Chloride Addition. J. Mater. Eng. Perform. 28 (2019). doi:10.1007/s11665-019-04339-x. 10.1007/s11665-019-04339-x
18
P.K. Katiyar, B. Bhushan, and K. Mondal, Relook at the Mechanisms of Spheroidization of 0.7 wt.% C Steel by Potentiodynamic Polarization. Metallogr. Microstruct. Anal. 8 (2019), pp. 840-847. doi:10.1007/s13632-019- 00588-3. 10.1007/s13632-019-00588-3
19
H.J. Cln and N.D. Greene, Electrochemical properties of Fe and steel. Corros. Sci. 9 (1969), pp. 3-13. 10.1016/S0010-938X(69)80062-4
20
M. Stern, The effect of alloying elements in iron on hydrogen over-voltage and corrosion rate in acid environment. J. Electrochem. Soc. 102 (1955), pp. 663-668. doi:10.1149/1.2429938. 10.1149/1.2429938
21
D.N. Staicopolus, The Role of Cementite in the Acidic Corrosion of Steel. J. Electrochem. Soc. 110 (1963), 1121. doi:10.1149/1.2425602. 10.1149/1.2425602
22
S.I. Al-rubaiey, E.A. Anoon, and M.M. Hanoon, The Influence of Microstructure on the Corrosion Rate of Carbon Steels. Eng. Tech. J. 31 (2013), pp, 1-12.
23
A.P. Moon, S. Sangal, S. Layek, S. Giribaskar, and K. Mondal, Corrosion Behavior of High-Strength Bainitic Rail Steels. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46 (2015), pp. 1500-1518. doi:10.1007/s11661- 014-2732-0. 10.1007/s11661-014-2732-0
24
J. Sánchez, J. Fullea, C. Andrade, J.J. Gaitero, and A. Porro, AFM study of the early corrosion of a high strength steel in a diluted sodium chloride solution. Corros. Sci. 50 (2008), pp. 1820-1824. doi:10.1016/j.corsci.2008.03.013. 10.1016/j.corsci.2008.03.013
25
W.J. Tomlinson and K. Giles, The microstructures and corrosion of a 0.79C steel tempered in the range 100-700°C. Corros. Sci. 23 (1983), pp. 1353-1359. doi:10.1016/0010-938X(83)90083-5. 10.1016/0010-938X(83)90083-5
26
D. Clover, B. Kinsella, B. Pejcic, and R. De Marco, The influence of microstructure on the corrosion rate of various carbon steels. J. Appl. Electrochem. 35 (2005), pp. 139-149. doi:10.1007/s10800-004-6207-7. 10.1007/s10800-004-6207-7
27
E. Corro and A.P. Measurements, Standard Practice for from Electrochemical Measurements. ASTM G3_89. 1, 89 (2016), pp. 1-7. doi:10.1520/G0102-89R15E01.2.
28
B. Panda, R. Balasubramaniam, G. Dwivedi, and S. Mahapatra, Corrosion of novel rail steels in 3.5% NaCl solution. Trans. Indian Inst. Met. 61 (2008), pp. 177-181. 10.1007/s12666-008-0005-6
29
P.K. Katiyar, P.K. Singh, and R.Maurya, Corrosion behavior of plain carbon steels under different heat treatment conditions in freely aerated 3.5% NaCl solution. International Journal of Sustainable BuildingTechnology and Urban Development, 13 (2022), pp. 44-68.
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 13
  • No :2
  • Pages :198-220
  • Received Date : 2022-04-18
  • Accepted Date : 2022-05-08
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close