All Issue

2025 Vol.16, Issue 1 Preview Page

General Article

31 March 2025. pp. 111-140
Abstract
References
1

S. Ponis, E. Aretoulaki, T.N. Maroutas, G. Plakas, and K. Dimogiorgi, A Systematic Literature Review on Additive Manufacturing in the context of Circular Economy. Sustainability. 13(11) (2021), 6007. DOI: https://doi.org/10.3390/su13116007.

10.3390/su13116007
2

J. Liu and P. Wen, Metal vaporization and its influence during laser powder bed fusion process. Materials & Design. 215 (2022), 110505. DOI: https://doi.org/10.1016/j.matdes.2022.110505.

10.1016/j.matdes.2022.110505
3

S. Yang and Y.F. Zhao, Additive manufacturing-enabled design theory and methodology: a critical review. The International Journal of Advanced Manufacturing Technology. 80(1-4) (2015), pp. 327-342. DOI: https://doi.org/10.1007/s00170-015-6994-5.

10.1007/s00170-015-6994-5
4

F. Setaki, F. Tian, M. Turrin, M. Tenpierik, L. Nijs, and A. Van Timmeren, 3D-printed sound absorbers: compact and customisable at broadband frequencies. Architecture Structures and Construction. 3(2) (2023), pp. 205-215.

10.1007/s44150-023-00086-9
5

N. Shahrubudin, T. Lee, and R. Ramlan, An overview on 3D printing technology: technological, materials, and applications. Procedia Manufacturing. 35 (2019), pp. 1286-1296. DOI: https://doi.org/10.1016/j.promfg.2019.06.089.

10.1016/j.promfg.2019.06.089
6

S.M. Top and İ. Ayçam, Material used in 3-Dimensional printing technology in the construction industry. Journal of Science Part B: Art, Humanities, Design And Planning. 11(1) (2023), pp. 1-17.

7

European Economic and Social Committee, Additive manufacturing [Online], 2017. Available at: https://www.eesc.europa.eu/it/our-work/opinions-information-reports/opinions/additive-manufacturing [Accessed 18/09/2024].

8

P. Gerbert, S. Castagnino, C. Rothballer, A. Renz, and R. Filitz, Digital in Engineering and Construction: The Transformative Power of Building Information Modeling [Online], 2016. Available at: http://futureofconstruction.org. BCG The Boston Consulting Group [Accessed 14/09/2024].

9

F. Hamidi and F. Aslani, Additive manufacturing of cementitious composites: Materials, methods, potentials, and challenges. Construction and Building Materials. 218 (2019), pp. 582-609. DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.140.

10.1016/j.conbuildmat.2019.05.140
10

A.A. Rashid, S.A. Khan, S.G. Al-Ghamdi, and M. Koç, Additive manufacturing: Technology, applications, markets, and opportunities for the built environment. Automation in Construction. 118 (2020), 103268.

10.1016/j.autcon.2020.103268
11

D.D. Camacho, P. Clayton, W.J. O'Brien, C. Seepersad, M. Juenger, R. Ferron, and S. Salamone, Applications of additive manufacturing in the construction industry - A forward-looking review. Automation in Construction. 89 (2018), pp. 110-119.

10.1016/j.autcon.2017.12.031
12

T. Tabassum and A.A. Mir, A review of 3d printing technology-the future of sustainable construction. Materials Today Proceedings, 93 (2023), pp. 408-414. DOI: https://doi.org/10.1016/j.matpr.2023.08.013.

10.1016/j.matpr.2023.08.013
13

S. El-Sayegh, L. Romdhane, and S. Manjikian, A critical review of 3D printing in construction: benefits, challenges, and risks. Archives of Civil and Mechanical Engineering. 20(2) (2020).

10.1007/s43452-020-00038-w
14

European Construction Sector Observatory, Integrating digital innovations in the construction sector: The case of 3D printing and drones in construction [Online], 2019. Available at: https://ec.europa.eu. [Accessed 14/09/2024].

15

M.V. Sarakinioti, M. Turrin, T. Konstantinou, M. Tenpierik, and U. Knaack, Developing an integrated 3D-printed façade with complex geometries for active temperature control. Materials Today Communications. 15 (2018), pp. 275-279. DOI: https://doi.org/10.1016/j.mtcomm.2018.02.027.

10.1016/j.mtcomm.2018.02.027
16

C. Duty, V. Kunc, B. Compton, B. Post, D. Erdman, R.J. Smith, R. Lind, P. Lloyd, and L. Love, Structure and mechanical behavior of Big Area Additive Manufacturing (BAAM) materials. Rapid Prototyp J. 23 (2017), pp. 181-189.

10.1108/RPJ-12-2015-0183
17

B. Khoshnevis and R. Dutton, Innovative rapid prototyping process makes large sized, smooth surfaced complex shapes in a wide variety of materials. Materials Technology. 13(2) (1998), pp. 53-56.

10.1080/10667857.1998.11752766
18

G. De Schutter, K. Lesage, V. Mechtcherine, V.N. Nerella, G. Habert, and I. Agusti-Juan, Vision of 3D printing with concrete - Technical, economic and environmental potentials. Cement and Concrete Research. 112 (2018), pp. 25-36. DOI: https://doi.org/10.1016/j.cemconres.2018.06.001.

10.1016/j.cemconres.2018.06.001
19

X. Peng, L. Kong, J.Y.H. Fuh, and H. Wang, A review of Post-Processing technologies in Additive Manufacturing. Journal of Manufacturing and Materials Processing. 5(2) (2021), 38. DOI: https://doi.org/10.3390/jmmp5020038.

10.3390/jmmp5020038
20

R. Guamán-Rivera, A. Martínez-Rocamora, R. García-Alvarado, C. Muñoz-Sanguinetti, F. González-Böhme, and F. Auat-Cheein, Recent Developments and Challenges of 3D-Printed Construction: A review of research fronts. Buildings. 12(2) (2022), 229.

10.3390/buildings12020229
21

United Nations Environment Programme, Global Status Report for Buildings and Construction: Beyond foundations. Mainstreaming sustainable solutions to cut emissions from the buildings sector [Online], 2024. Available at: https://www.unep.org/resources/report/global-status-report-buildings-and-construction [Accessed 20/09/2024].

22

I. Rojek, D. Mikołajewski, M. Macko, Z. Szczepański, and E. Dostatni, Optimization of Extrusion-Based 3D printing process using neural networks for sustainable development. Materials. 14(11) (2021), 2737. DOI: https://doi.org/10.3390/ma14112737.

10.3390/ma1411273734067326PMC8196833
23

A. Baigarina, E. Shehab, and M.H. Ali, Construction 3D printing: a critical review and future research directions. Progress in Additive Manufacturing. (2023).

10.1007/s40964-023-00409-8
24

S. Lim, R. Buswell, T. Le, S. Austin, A. Gibb, and T. Thorpe, Developments in construction-scale additive manufacturing processes. Automation in Construction. 21 (2012), pp. 262-268.

10.1016/j.autcon.2011.06.010
25

M. Pan, T. Linner, W. Pan, H. Cheng, and T. Bock, A framework of indicators for assessing construction automation and robotics in the sustainability context. Journal of Cleaner Production. 182 (2018), pp. 82-95. DOI: https://doi.org/10.1016/j.jclepro.2018.02.053.

10.1016/j.jclepro.2018.02.053
26

European Commission, Horizon Europe: The EU research and innovation programme (2021-2027) [Online], 2022. Available at: https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en [Accessed 20/09/2024].

27

European Parliament and of the Council, Programme for the Environment and Climate Action (LIFE), and repealing Regulation (EU) No 1293/2013 (Regulation (EU) 2021/783) [Online], 2021. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2021.172.01.0053.01.ENG&toc=OJ%3AL%3A2021%3A172%3ATOC [Accessed 20/09/2024].

28

C. Gosselin, R. Duballet, P. Roux, N. Gaudillière, J. Dirrenberger, and P. Morel, Large-scale 3D printing of ultra-high performance concrete - a new processing route for architects and builders. Materials & Design. 100 (2016), pp. 102-109. DOI: https://doi.org/10.1016/j.matdes.2016.03.097.

10.1016/j.matdes.2016.03.097
29

A. Puzatova, P. Shakor, V. Laghi, and M. Dmitrieva, Large-Scale 3D printing for construction application by means of robotic arm and gantry 3D printer: a review. Buildings. 12(11) (2022), 2023. DOI: https://doi.org/10.3390/buildings12112023.

10.3390/buildings12112023
30

M. Bazli, H. Ashrafi, A. Rajabipour, and C. Kutay, 3D printing for remote housing: Benefits and challenges. Automation in Construction. 148 (2023), 104772. DOI: https://doi.org/10.1016/j.autcon.2023.104772.

10.1016/j.autcon.2023.104772
31

M.R. Khosravani and A. Haghighi, Large-Scale Automated Additive Construction: overview, robotic solutions, sustainability, and future prospect. Sustainability. 14(15) (2022), 9782. DOI: https://doi.org/10.3390/su14159782.

10.3390/su14159782
32

A. Chiusoli, TECLA | Un habitat eco-sostenibile stampato in 3D. Stampanti 3D | WASP [Online], 2024. Available at: https://www.3dwasp.com/casa-stampata-in-3d-tecla/ [Accessed 10/09/2024].

33

X. Zhang, M. Li, J.H. Lim, Y. Weng, Y.W.D. Tay, H. Pham, and Q. Pham, Large-scale 3D printing by a team of mobile robots. Automation in Construction. 95 (2018), pp. 98-106.

10.1016/j.autcon.2018.08.004
34

H. Strauß and U. Knaack, Additive Manufacturing for Future Facades: The potential of 3D printed parts for the building envelope. Journal of Facade Design and Engineering. 3(3-4) (2016), pp. 225-235. DOI: https://doi.org/10.3233/fde-150042.

10.3233/FDE-150042
35

Ellen Mcarthur foundation, The technical cycle of the butterfly diagram. Ellen Mcarthur Foundation [Online], 2022. Available at: https://www.ellenmacarthurfoundation.org/articles/the-technical-cycle-of-the-butterfly-diagram [Accessed 18/11/2024].

36

Studio RAP, Studio RAP 3D prints ceramic tiles to resemble red bricks for Amsterdam boutique facade. Designboom [Online], 2022. Available at: https://www.designboom.com/architecture/studio-rap-3d-print-ceramic-tiles-red-bricks-amsterdam-boutique-facade-01-28-2022/ [Accessed 24/09/2024].

37

A. Malagò, L'approccio algoritmico alla progettazione dell'involucro e la stampa 3D. Costruire in Laterizio. 194 (2024), pp. 80-89.

38

P. Pintos, Ceramic House / Studio RAP. ArchDaily [Online], 2024. Available at: https://www.archdaily.com/1010548/ceramic-house-studio-rap [Accessed 24/09/2024].

39

T. Ravenscroft, New Delft Blue archways wrapped in 3,000 unique 3D-printed ceramics tiles. Dezeen [Online], 2023. Available at: https://www.dezeen.com/2023/06/29/new-delft-blue-3d-printed-ceramic-archway-studio-rap/ [Accessed 25/09/2024].

40

Severi, Silicone 3D printing with a multi-nozzle extrusion system. WASP [Online], 2024. Available at: https://www.3dwasp.com/en/silicone-3d-printing-with-a-multi-nozzle-extrusion-system/ [Accessed 24/09/2024].

41

3D WASP, 3D printed inflatable auxetic tiles in silicone for light regulation [Video]. YouTube [Online], 2024. Available at: https://www.youtube.com/watch?v=LeRs6JZJBkc [Accessed 30/09/2024].

42

J. Wassink, Sponge wall saves energy. Delft Integraal [Online], 2021. Available at: https://www.tudelft.nl/en/delft-integraal/articles/okt-2021-naar-de-natuur/sponge-wall-saves-energy [Accessed 24/09/2024].

43

4TU.Bouw, SPONG3D [Online], 2021. Available at: https://www.4tu.nl/bouw/Projects/SPONG3D/ [Accessed 24/09/2024].

44

M. Turrin, P. De Ruiter, and M. Tenpierik, Additive manufacturing for integral design & engineering. In BE-AM | Built Environment Additive Manufacturing: BE-AM 2021 Symposium and Exhibition (pp. 105-119). TU Darmstadt [Online], 2021. Available at: https://be-am.de/wp-content/uploads/2024/11/BE-AM_Booklet_2021.pdf [Accessed 24/09/2024].

45

F. Setaki, M. Tenpierik, M. Turrin, and A. Van Timmeren, Acoustic absorbers by additive manufacturing. Building and Environment. 72 (2013), pp. 188-200. DOI: https://doi.org/10.1016/j.buildenv.2013.10.010.

10.1016/j.buildenv.2013.10.010
46

J.R. Moreno, Arachne 3D printed facade. IAAC Blog [Online], 2020. Available at: https://www.iaacblog.com/programs/arachne-3d-printed-facade [Accessed 24/09/2024].

47

Parametric House, Arachne [Online], 2024. Available at: https://parametrichouse.com/arachne/ [Accessed 24/09/2024].

48

Archi Solutions, Arachne [Online], 2018. Available at: https://www.archi-solutions.com/2017-2arachne/ [Accessed 24/09/2024].

49

3Dnatives, The world's largest 3D printed pavilion is in Nanjing, China [Online], 2021. Available at: https://www.3dnatives.com/en/the-worlds-largest-3d-printed-pavilion-is-in-nanjing-china-070720215/ [Accessed 15/11/2024].

50

ArchDaily, Beyond the Geometry: The World's Largest Modified Plastic 3D Printing Architecture / Archi-Union Architects + Fab-Union [Online], 2021. Available at: https://www.archdaily.com/960939/beyond-the-geometry-the-worlds-largest-modified-plastic-3d-printing-architecture-archi-union-architects [Accessed 15/11/2024].

51

P.F. Yuan, H.S. Beh, X. Yang, L. Zhang, and T. Gao, Feasibility study of large-scale mass customization 3D printing framework system with a case study on Nanjing Happy Valley East Gate. Frontiers of Architectural Research. 11(4) (2022), pp. 670-680. DOI: https://doi.org/10.1016/j.foar.2022.05.005.

10.1016/j.foar.2022.05.005
52

Archidust, Design research into the possibilities of 3D concrete printed facades by Neutelings Riedijk Architects in collaboration with TU Eindhoven and Vertico [Online], 2023. Available at: https://www.archidust.com/blog/2023/12/14/design-research-into-the-possibilities-of-3d-concrete-printed-facades-by-neutelings-riedijk-architects-in-collaboration-with-tueindhoven-and-vertico/ [Accessed 15/11/2024].

53

I.C. Nan and A. Vigorito, Exploring 3D concrete printing of lattice structures on robotically-shaped sand formwork for circular futures. In G. Di Marco, D. Lombardi, & M. Tedjosaputro (Eds.), Creativity in the Age of Digital Reproduction: xArch 2023 (pp. 128-135). (Lecture Notes in Civil Engineering; Vol. 343). Springer. (2024).

10.1007/978-981-97-0621-1_16
54

Neutelings Riedijk Architects, Design research into the possibilities of 3D concrete printed facades. Retrieved [Online], 2023. Available at: https://neutelings-riedijk.com/news/design-research-into-the-possibilities-of-3d-concrete-printed-facades/ [Accessed 15/11/2024].

55

Vertico, Sand mould facades [Online], 2023. Available at: https://www.vertico.com/projects/sand-mould-facades [Accessed 15/11/2024].

56

M. Teeling, M. Turrin, and P. de Ruiter, PULSE: Integrated parametric modeling for a shading system: From daylight optimization to additive manufacturing. In M. Turrin, B. Peters, W. O'Brien, R. Stouffs, & T. Dogan (Eds.), Proceedings of the Symposium on Simulation for Architecture and Urban Design 2017: SimAUD 2017 (pp. 85-92). (2017). Simulation Councils.

57

J. Duro-Royo, J.V. Zak, A. Ling, Y.-J. Tai, N. Hogan, B. Darweesh, and N. Oxman, Designing a tree: Fabrication-informed digital design and fabrication of hierarchical structures. Proceedings of IASS Annual Symposia, IASS 2018 Boston Symposium: Construction-aware structural design, 1-7 (2018). International Association for Shell and Spatial Structures (IASS).

58

N.A. Lee, R.E. Weber, J.H. Kennedy, J.J. Van Zak, J. Duro-Royo, and N. Oxman, Multi-material printing of multi lengthscale bio-composite membranes. In C. Lázaro, K.-U. Bletzinger, & E. Oñate (Eds.), Proceedings of the IASS Annual Symposium 2019 - Structural Membranes 2019: Form and Force (pp. 1-8). International Association for Shell and Spatial Structures (IASS). (2019).

59

N.A. Lee, R.E. Weber, J.H. Kennedy, J.J. Van Zak, M. Smith, J. Duro-Royo, and N. Oxman, Sequential multi-material additive manufacturing of functionally graded biopolymer composites. 3D Printing and Additive Manufacturing. 7(5) (2020), pp. 205-215. DOI: https://doi.org/10.1089/3dp.2020.0171.

10.1089/3dp.2020.017136654920PMC9586237
60

L. Mogas-Soldevila, J. Duro-Royo, and N. Oxman, FORM FOLLOWS FLOW: A material- driven computational workflow for digital fabrication of large-scale hierarchically structured objects. In ACADIA 2015: Computational Ecologies: Design in the Anthropocene. Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (pp. 185-193). Cincinnati, OH: ACADIA. (2015).

61

N. Oxman, C. Ortiz, F. Gramazio, and M. Kohler, Material ecology. Computer-Aided Design. 60(1) (2015), pp. 1-2. DOI: https://doi.org/10.1016/j.cad.2014.10.002.

10.1016/j.cad.2014.10.002
62

N. Oxman, Aguahoja I. OXMAN [Online], 2020. Available at: https://oxman.com/projects/aguahoja [Accessed 15/11/2024].

63

S. Barnes, L. Kirssin, E. Needham, E. Baharlou, D.E. Carr, and J. Ma, 3D printing of ecologically active soil structures. Additive Manufacturing. 52 (2022), 102670. DOI: https://doi.org/10.1016/j.addma.2022.102670.

10.1016/j.addma.2022.102670
64

DeZeen, University of Virginia's 3D-printed soil seed walls. Dezeen [Online], 2022. Available at: https://www.dezeen.com/2022/09/05/university-of-virginia-3d-printed-soil-seed-walls/ [Accessed 15/11/2024].

65

S. Mitra, 3D printed living soil walls by University of Virginia can grow plants. Yanko Design [Online], 2022. Available at: https://www.yankodesign.com/2022/09/05/3d-printed-living-soil-walls-by-university-of-virginia-can-grow-plants/ [Accessed 15/11/2024].

66

IOUS Studio, Bioreceptive wall [Online], 2023. Available at: https://www.ious-studio.com/architecture/bioreceptive-wall [Accessed 15/11/2024].

67

C. Rotondi, C. Gironi, D. Ciufo, M. Diana, and S. Lucibello, Bioreceptive Ceramic Surfaces: Material experimentations for responsible research and design innovation in circular economy transition and "Ecological Augmentation." Sustainability. 16(8) (2024), 3208. DOI: https://doi.org/10.3390/su16083208.

10.3390/su16083208
68

J.A. Lee, J.Y. Kim, J.H. Ahn, Y. Ahn, and S.Y. Lee, Current advancements in the bio-based production of polyamides. Trends in Chemistry. 5(12) (2023), pp. 873-891. https://doi.org/10.1016/j.trechm.2023.10.001.

10.1016/j.trechm.2023.10.001
69

Gramazio Kohler Research, Acoustic Diffusor Panels, Immersive Design Lab, ETH Zurich [Online], 2021. Available at: https://gramaziokohler.arch.ethz.ch/web/e/projekte/429.html [Accessed 25/09/2024].

70

Gramazio Kohler Research, Immersive Design Lab, ETH Zurich, 2020-2021 [Online], 2021. Available at: https://gramaziokohler.arch.ethz.ch/web/e/projekte/417.html [Accessed 07/10/2024].

71

D. Guerra, 3D-printed panels by Gramazio Kohler Research merging acoustics with aesthetics. Parametric Architecture [Online], 2023. Available at: https://parametric-architecture.com/3d-printed-panels-by-gramazio-kohler-research-merging-acoustics-with-aesthetics/ [Accessed 07/10/2024].

72

M. Turrin, Integrated performance by additive manufacturing [Video]. BE-AM | Built Environment - Additive Manufacturing. TU-Delft [Online], 2021. Available at: https://www.youtube.com/watch?v=W_jN8pcPa1U [Accessed 24/09/2024].

73

D. McClements, SLA vs. FDM: Differences and Comparison. Xometry [Online], 2024. Available at: https://www.xometry.com/resources/3d-printing/sla-vs-fdm-3d-printing/ [Accessed 24/09/2024].

74

D. McClements and G. Paulsen, SLS vs. FDM: Differences and Comparisons. Xometry [Online], 2024. Available at: https://www.xometry.com/resources/3d-printing/sls-vs-fdm-3d-printing/ [Accessed 24/09/2024].

75

CORDIS, European Commission, Fact-or-Myth: Bio-based, organic, biodegradable [Online], 2019. Available at: https://cordis.europa.eu/article/id/125396-factormyth-biobased-organic-biodegradable [Accessed 25/09/2024].

76

C.G. Manning, Technology readiness levels - NASA. NASA [Online], 2023. Available at: https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels/ [Accessed 18/11/2024].

77

NASA ESTO, Technology readiness levels - NASA Earth Science and Technology Office [Online], 2020. Available at: https://esto.nasa.gov/trl/ [Accessed 18/11/2024].

78

C. Strazza, N. Olivieri, A. De Rose, T. Stevens, L. Peeters, D. Tawil-Jamault, and M. Buna, European Commission: Directorate-General for Research and Innovation, Technology readiness level: guidance principles for renewable energy technologies: final report, (2017). Publications Office. DOI: https://data.europa.eu/doi/10.2777/577767.

79

W.D. Callister and D.G. Rethwisch, Materials Science and Engineering: An Introduction. Wiley. 2018.

80

L. Aelenei, D. Aelenei, R. Romano, E. Sergio, M. Marcin, B. Jose, and M. Rico-Martinez, Case Studies-Adaptive Facade Network. 2018.

81

R. Romano, L. Aelenei, D. Aelenei, and E.S. Mazzucchelli, What is an adaptive façade? Analysis of Recent Terms and definitions from an international perspective. DOAJ (DOAJ: Directory of Open Access Journals). 6(3) (2018), pp. 65-76. DOI: https://doi.org/10.7480/jfde.2018.3.2478.

82

R.G. Aragonés and F. Olivieri, Eco Architecture: Innovative Façade Design with Vegetal Elements: Opaque and Translucent Green Wall Constructive Solutions. Design Principles & Practice: An International Journal. 4(2) (2010), pp. 103-122.

10.18848/1833-1874/CGP/v04i02/37847
83

P. Gallo, R. Romano, and E. Belardi, Smart Green Prefabrication: Sustainability Performances of Industrialized Building Technologies. Sustainability. 13(9) (2021), 4701. DOI: https://doi.org/10.3390/SU13094701.

10.3390/su13094701
84

J. Torres, R. Garay-Martinez, X. Oregi, J.I. Torrens-Galdiz, A. Uriarte-Arrien, A. Pracucci, O. Casadei, S. Magnani, N. Arroyo, and A.M. Cea, Plug and play modular façade construction system for renovation for residential buildings. Buildings. 11(9) (2021), 419. DOI: https://doi.org/10.3390/buildings11090419.

10.3390/buildings11090419
85

N. Keena, M. Raugei, M. Lokko, M.A. Etman, V. Achnani, B.K. Reck, and A. Dyson, A Life-Cycle Approach to Investigate the Potential of Novel Biobased Construction Materials toward a Circular Built Environment. Energies. 15(19) (2022), 7239. DOI: https://doi.org/10.3390/en15197239.

10.3390/en15197239
86

M.N. Andanje, J.W. Mwangi, B.R. Mose, and S. Carrara, Biocompatible and Biodegradable 3D Printing from Bioplastics: A Review. Polymers. 15(10) (2023), 2355. DOI: https://doi.org/10.3390/polym15102355.

10.3390/polym1510235537242930PMC10221408
87

A. Wiberg, J. Persson, and J. Ölvander, Design for additive manufacturing - a review of available design methods and software. Rapid Prototyping Journal. 25(6) (2019), pp. 1080-1094. DOI: https://doi.org/10.1108/rpj-10-2018-0262.

10.1108/RPJ-10-2018-0262
88

R. Ranjan, D. Kumar, M. Kundu, and S.C. Moi, A critical review on Classification of materials used in 3D printing process. Materials Today Proceedings. 61 (2022), pp. 43-49. DOI: https://doi.org/10.1016/j.matpr.2022.03.308.

10.1016/j.matpr.2022.03.308
89

J. O'Connell, Cartesian 3D printer vs. delta vs. SCARA vs. belt vs. CoreXY vs. polar: Which 3D printer is best for you? All3DP [Online], 2023. Available at: https://all3dp.com/2/cartesian-3d-printer-delta-scara-belt-corexy-polar/ [Accessed 19/11/2024].

90

Manufactur3D, What Are The Four Types Of FDM 3D Printers? Cartesian, Delta, Polar & Scara | Manufactur3D. Manufactur3D Magazine [Online], 2020. Available at: https://manufactur3dmag.com/understanding-the-four-types-of-fdm-3d-printers-cartesian-delta-polar-scara/ [Accessed 19/11/2024].

91

C. Schwaar, The complete guide to SLS 3D printing. All3DP [Online], 2024. Available at: https://all3dp.com/1/sls-3d-printing-the-ultimate-guide/ [Accessed 19/11/2024].

92

C. Bănică, A. Sover, and D. Anghel, Printing the Future Layer by Layer: A Comprehensive exploration of additive manufacturing in the era of Industry 4.0. Applied Sciences. 14(21) (2024), 9919. DOI: https://doi.org/10.3390/app14219919.

10.3390/app14219919
93

S.F. Iftekar, A. Aabid, A. Amir, and M. Baig, Advancements and Limitations in 3D Printing Materials and Technologies: A Critical review. Polymers. 15(11) (2023), 2519. DOI: https://doi.org/10.3390/polym15112519.

10.3390/polym1511251937299318PMC10255598
94

UNI EN 13830, Curtain walling - Product standard. Structural integrity and safety guidelines. Milan, Italy: Ente Nazionale Italiano di Unificazione (UNI). 2020.

95

International Organization for Standardization, ISO 14040: Environmental management - Life cycle assessment - Principles and framework. Geneva, Switzerland: ISO. 2006.

96

K. Chadha, A. Dubor, E. Cabay, Y. Tayoun, L. Naldoni, and M. Moretti, Additive Manufacturing for the Circular Built Environment: Towards Circular Construction with Earth-Based Materials. In Springer eBooks (pp. 111-128). (2024). DOI: https://doi.org/10.1007/978-3-031-39675-5_7.

10.1007/978-3-031-39675-5_7
97

C. Zhu, T. Li, M.M. Mohideen, P. Hu, R. Gupta, S. Ramakrishna, and Y. Liu, Realization of Circular Economy of 3D Printed Plastics: a review. Polymers. 13(5) (2021), 744. DOI: https://doi.org/10.3390/polym13050744.

10.3390/polym1305074433673625PMC7957743
98

M. Fonseca and A.M. Matos, 3D Construction Printing Standing for Sustainability and Circularity: Material-Level Opportunities. Materials. 16(6) (2023), 2458. DOI: https://doi.org/10.3390/ma16062458.

10.3390/ma1606245836984341PMC10051644
99

A. Almusaed, I. Yitmen, J.A. Myhren, and A. Almssad, Assessing the impact of recycled building materials on environmental sustainability and energy efficiency: A comprehensive framework for reducing greenhouse gas emissions. Buildings. 14(6) (2024), 1566. DOI: https://doi.org/10.3390/buildings14061566.

10.3390/buildings14061566
100

R. Minunno, T. O'Grady, G. Morrison, R. Gruner, and M. Colling, Strategies for applying the circular economy to prefabricated buildings. Buildings. 8(9) (2018), 125. DOI: https://doi.org/10.3390/buildings8090125.

10.3390/buildings8090125
101

R. Pagani, G. Chiesa, and J. Tulliani, Biomimetica e Architettura. Come la natura domina la tecnologia. FrancoAngeli. 2016.

102

E. Mazzucchelli, S. Gosztonyi, R. Romano, N. Nestle, B. Marcin, and C. Menezo, Future Developments - Innovation for the next generation of adaptive building envelopes. 2018, TU Delft Open for the COST Action 1403 Adaptive Facade Network. ISBN 978-94-6366-110-2. Available at: https://tu1403.eu/wp-content/uploads/Vol-3-1_for-web-Open-Access-9789463661102.pdf

103

N.L. Montàs and N. Chayaamor-Heil, Biomimetic for building skin : living envelope for contemporary architecture. In 'THE POWER OF SKIN' New Materiality in Contemporary Architectural Design. Arcadia Mediática [Online], 2018. Available at: https://hal.science/hal-02890834v1 [Accessed 22/11/2024].

104

M.D.L.Á. Ortega Del Rosario, K. Beermann, and M. Chen Austin, Environmentally Responsive Materials for Building Envelopes: A Review on Manufacturing and Biomimicry-Based Approaches. Biomimetics. 8(1) (2023), 52. DOI: https://doi.org/10.3390/biomimetics8010052.

10.3390/biomimetics801005236810383PMC9944834
105

D. Krug and J. Miles, Off-Site Construction: Sustainability Characteristics [Online], 2013. Available at: https://www.buildoffsite.com/content/uploads/2015/03/BoS_offsiteconstruction_1307091.pdf [Accessed 22/11/2024].

106

T.D. Oesterreich and F. Teuteberg, Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Computers in Industry. 83 (2016), pp. 121-139. DOI: https://doi.org/10.1016/j.compind.2016.09.006.

10.1016/j.compind.2016.09.006
107

Y. Jiang, D. Zhao, D. Wang, and Y. Xing, Sustainable Performance of Buildings through Modular Prefabrication in the Construction Phase: A Comparative Study. Sustainability. 11(20) (2019), 5658. https://doi.org/10.3390/su11205658.

10.3390/su11205658
108

M. Bekaert, K. Van Tittelboom, and G. De Schutter, (2023). The effect of curing conditions on the service life of 3D printed concrete formwork. Materials. 16 (21)(2019), 6972. DOI: https://doi.org/10.3390/ma16216972.

10.3390/ma1621697237959569PMC10647294
109

D. Kajzr, T. Myslivec, and J. Černohorský, Modelling, analysis and comparison of robot energy consumption for Three-Dimensional Concrete Printing Technology. Robotics. 13(5) (2024), 78. DOI: https://doi.org/10.3390/robotics13050078.

10.3390/robotics13050078
110

G. May and F. Psarommatis, Maximizing energy efficiency in Additive Manufacturing: A review and Framework for Future research. Energies. 16(10) (2023), 4179. DOI: https://doi.org/10.3390/en16104179.

10.3390/en16104179
111

A. Selvam, S. Mayilswamy, R. Whenish, K. Naresh, V. Shanmugam, and O. Das, Multi-objective optimization and prediction of surface roughness and printing time in FFF printed ABS polymer. Scientific Reports. 12(1) (2022). DOI: https://doi.org/10.1038/s41598-022-20782-8.

10.1038/s41598-022-20782-836207348PMC9546872
112

R. Chýlek, L. Kudela, J. Pospíšil, and L. Šnajdárek, Parameters Influencing the Emission of Ultrafine Particles during 3D Printing. International Journal of Environmental Research and Public Health. 18(21) (2021), 11670. DOI: https://doi.org/10.3390/ijerph182111670.

10.3390/ijerph18211167034770184PMC8582798
113

H. Garcia-Gonzalez, T. Lopez-Pola, P. Fernandez-Rubio, and P. Fernandez-Rodriguez, Analysis of volatile organic compound emissions in 3D printing: Implications for indoor air quality. Buildings. 14(11) (2024), 3343. DOI: https://doi.org/10.3390/buildings14113343.

10.3390/buildings14113343
114

K. Ejsmont, B. Gladysz, and A. Kluczek, Impact of Industry 4.0 on Sustainability-Bibliometric Literature Review. Sustainability. 12(14) (2020), 5650. DOI: https://doi.org/10.3390/su12145650.

10.3390/su12145650
115

Y.-J.T. Tai, C. Bader, A.S. Ling, J. Disset, B. Darweesh, J. Duro-Royo, J. Van Zak, N. Hogan, and N. Oxman, Designing (for) decay: Parametric material distribution for hierarchical dissociation of water-based biopolymer composites. In C. Mueller & S. Adriaenssens (Eds.), Proceedings of the IASS Symposium 2018: Creativity in Structural Design (pp. 1-8). International Association for Shell and Spatial Structures (IASS). (2018).

116

J.A. Madrid, G.S. Ortega, J.G. Carabaño, N.O.E. Olsson, and J.A.T. Ríos, (2023). 3D claying: 3D printing and recycling clay. Crystals. 13(3) (2018), 375. DOI: https://doi.org/10.3390/cryst13030375.

10.3390/cryst13030375
117

H. Mangold and B. Von Vacano, The frontier of Plastics recycling: Rethinking waste as a resource for High‐Value applications. Macromolecular Chemistry and Physics. 223(13) (2022). DOI: https://doi.org/10.1002/macp.202100488.

10.1002/macp.202100488
118

J. Machotová, M. Pagáč, R. Svoboda, J. Jansa, Š. Podzimek, E. Černošková, J. Palarčík, Z. Koutová, P. Kutálek, and L. Zárybnická, Effect of PA12 powder recycling on properties of SLS 3D printed parts, including their hygroscopicity. European Polymer Journal. 220 (2024), 113432. DOI: https://doi.org/10.1016/j.eurpolymj.2024.113432.

10.1016/j.eurpolymj.2024.113432
119

R.C.G.M. Loonen, J.M. Rico-Martinez, F. Favoino, M. Brzezicki, C. Menezo, G. La Ferla, and L. Aelenei, Design for façade adaptability - Towards a unified and systematic characterization. Proceedings of the 10th Conference on Advanced Building Skins, Bern, Switzerland, (2015). pp. 1284-1294.

120

R. Pfaendner, Restabilization - 30 years of research for quality improvement of recycled plastics review. Polymer Degradation and Stability. 203 (2022), 110082. DOI: https://doi.org/10.1016/j.polymdegradstab.2022.110082.

10.1016/j.polymdegradstab.2022.110082
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 16
  • No :1
  • Pages :111-140
  • Received Date : 2025-03-01
  • Accepted Date : 2025-03-17
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
  • isc
Journal Informaiton Journal Informaiton - close