All Issue

2021 Vol.12, Issue 4

General Article

31 December 2021. pp. 296-307
B.A. Young, G. Falzone, Z. She, A.M. Thiele, Z. Wei, N. Neithalath, G. Sant, and L. Pilon, Early-age temperature evolutions in concrete pavements containing microencapsulated phase change materials. Constr. Build. Mater. 147 (2017), pp. 466-477. 10.1016/j.conbuildmat.2017.04.150.
H.D. Yun, K.L. Ahn, S.J. Jang, B.S. Khil, W.S. Park, and S.W. Kim, Thermal and Mechanical Behaviors of Concrete with Incorporation of Strontium-Based Phase Change Material (PCM). Int. J. Concr. Struct. Mater. 13 (2019). 10.1186/s40069-018-0326-8.
J. Li, P. Xue, W. Ding, J. Han, and G. Sun, Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells. 93 (2009), pp. 1761-1767. 10.1016/j.solmat.2009.06.007.
L.F. Cabeza, C. Castellón, M. Nogués, M. Medrano, R. Leppers, and O. Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 39 (2007), pp. 113-119. 10.1016/j.enbuild.2006.03.030.
P. Meshgin and X. Yunping, Effect of phase-change materials on properties of concrete. ACI Mater. Journal 2. 109 (2012), pp. 71-80. 10.14359/51683572
P.K. Dehdezi, M.R. Hall, A.R. Dawson, and S.P. Casey, Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials. Int. J. Pavement Eng. 14 (2013), pp. 449-462. 10.1080/10298436.2012.716837.
M. Hunger, A.G. Entrop, I. Mandilaras, H.J.H. Brouwers, and M. Founti, The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials. Cem. Concr. Compos. 31 (2009) pp. 731-743. 10.1016/j.cemconcomp.2009.08.002.
F. Fernandes, S. Manari, M. Aguayo, K. Santos, T. Oey, Z. Wei, G. Falzone, N. Neithalath, and G. Sant, On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials. Cem. Concr. Compos. 51 (2014), pp. 14-26. 10.1016/j.cemconcomp.2014.03.003.
S. Ishak, S. Mandal, H.S. Lee, and J.K. Singh, Microencapsulation of stearic acid with SiO2 shell as phase change material for potential energy storage. Sci. Rep. 10 (2020), pp. 1-15. 10.1038/s41598-020-71940-9.
S. Ishak, S. Mandal, H.S. Lee, and J.K. Singh, pH-controlled synthesis of sustainable lauric acid/SiO2 phase change material for scalable thermal energy storage. Sci. Rep. 11 (2021), pp. 1-15. 10.1038/s41598-021-94571-0.
S. Ishak, S. Mandal, H.S. Lee, and J.K. Singh, Effect of core-shell ratio on the thermal energy storage capacity of SiO2 encapsulated lauric acid. J. Energy Storage. 42 (2021), 103029. 10.1016/j.est.2021.103029.
A. Jayalath, R. San Nicolas, M. Sofi, R. Shanks, T. Ngo, L. Aye, and P. Mendis, Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials. Constr. Build. Mater. 120 (2016), pp. 408-417. 10.1016/j.conbuildmat.2016.05.116.
R. Snellings, J. Chwast, Ö. Cizer, N. De Belie, Y. Dhandapani, P. Durdzinski, J. Elsen, J. Haufe, D. Hooton, C. Patapy, M. Santhanam, K. Scrivener, D. Snoeck, L. Steger, S. Tongbo, A. Vollpracht, F. Winnefeld, and B. Lothenbach, Report of TC 238-SCM: hydration stoppage methods for phase assemblage studies of blended cements-results of a round robin test. Mater. Struct. Constr. 51 (2018). 10.1617/s11527-018-1237-5.
ASTM C143/C143M-20. Standard Test Method for Slump of Hydraulic-Cement Concrete; ASTM International: West Conshohocken, PA, USA, 2015, n.d.
H.H. Alzoubi, B.A. Albiss, and S.S. Abu sini, Performance of cementitious composites with nano PCMs and cellulose nano fibers. Constr. Build. Mater. 236 (2020), 117483. 10.1016/j.conbuildmat.2019.117483.
M. Fenollera, J.L. Míguez, I. Goicoechea, J. Lorenzo, and M.Á. Álvarez, The influence of phase change materials on the properties of self-compacting concrete, Materials (Basel). 6 (2013), pp. 3530-3546. https:// 10.3390/ma608353028811450PMC5521320
V.D. Cao, S. Pilehvar, C. Salas-Bringas, A.M. Szczotok, J.F. Rodriguez, M. Carmona, N. Al-Manasir, and A.L. Kjøniksen, Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Energy Convers. Manag. 133 (2017), pp. 56-66. 10.1016/j.enconman.2016.11.061.
F. Winnefeld, Interaction of superplasticizers with calcium sulfoaluminate cements By, Tenth Int. Conf. Superplast. Other Chem. Admixtures Concr. Prague, Czech Repub. (2012), pp. 21-36.
A. Arora, G. Sant, and N. Neithalath, Numerical simulations to quantify the influence of phase change materials (PCMs) on the early- and later-age thermal response of concrete pavements. Cem. Concr. Compos. 81 (2017), pp. 11-24. 10.1016/j.cemconcomp.2017.04.006.
B. Yilmaz and A. Olgun, Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone, Cem. Concr. Compos. 30 (2008), pp. 194-201. 10.1016/j.cemconcomp.2007.07.002.
R. Ylmén, U. Jäglid, B.M. Steenari, and I. Panas, Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cem. Concr. Res. 39 (2009), pp. 433-439. 10.1016/j.cemconres.2009.01.017.
O. Celik and E. Damci, Characterization of fly ash and it effects on the compressive strength properties of Portland cement. Indian J. Eng. 15 (2010), pp. 433-440.
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 12
  • No :4
  • Pages :296-307
  • Received Date :2021. 10. 13
  • Accepted Date : 2021. 10. 25
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close