All Issue

2025 Vol.16, Issue 2 Preview Page

General Article

30 June 2025. pp. 220-233
Abstract
References
1

K. Tobin, D. King, S. Henderson, A. Bellocchi, and S.M. Ritchie, Expression of emotions and physiological changes during teaching. Cultural Studies of Science Education. 11(3) (2016), pp. 669-692, DOI: 10.1007/S11422-016-9778-9.

10.1007/s11422-016-9778-9
2

L. Liu, S. Hu, F. Mehraliyev, H. Zhou, Y. Yu, and L. Yang, Recognizing emotions in restaurant online reviews: A hybrid model integrating deep learning and a sentiment lexicon. International Journal of Contemporary Hospitality Management. 36(9) (2023), pp. 2955-2976, DOI: 10.1108/IJCHM-02-2023-0244.

10.1108/IJCHM-02-2023-0244
3

O. Calderón, Oximetry: A reflective tool for the detection of physiological expression of emotions in a science education classroom. Cultural Studies of Science Education. 11(3) (2016), pp. 653-667, DOI: 10.1007/s11422-016-9731-y.

10.1007/s11422-016-9731-y
4

N. Andalibi and J. Buss, The human in emotion recognition on social media: Attitudes, outcomes, risks. Conference on Human Factors in Computing Systems - Proceedings. (2020), DOI: 10.1145/3313831.3376680.

10.1145/3313831.3376680
5

A.A.S. Solanki and A.S.H. Khan, Achieving sustainable building design and construction system through nature-inspired built forms. International Journal of Sustainable Building Technology. 5(1) (2022), pp. 50-59.

6

M.D. Lewis, Bridging emotion theory and neurobiology through dynamic systems modeling. Behavioral and Brain Sciences. (2005), DOI: 10.1177/0956797612464242.

7

E. Susman, G. Inoff-Germain, E.D. Nottelmann, D.L. Loriaux, G.B. Cutler Jr, and G.P. Chrousos, Hormones, emotional dispositions, and aggressive attributes in young adolescents. Child Development. (1987), JSTOR.

10.2307/1130551
8

M.A. Lumley, J.L. Cohen, G.S. Borszcz, A. Cano, A.M. Radcliffe, L.S. Porter, H. Schubiner, and F. J. Keefe, Pain and emotion: A biopsychosocial review of recent research. Journal of Clinical Psychology. 67(9) (2011), pp. 942-968, DOI: 10.1002/JCLP.20816.

10.1002/jclp.20816PMC3152687
9

J. Lambie and A.J. Marcel, Consciousness and the varieties of emotion experience: A theoretical framework. Psychological Review [Online], 2002. Available at: psycnet.apa.org [Accessed 02/2025].

10

R. Kumar, C.M. Sharma, V.M. Chariar, S. Hooda, and R. Beri, Emotion analysis of news and social media text for stock price prediction using SVM-LSTM-GRU composite model. International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES). (2022), pp. 329-333, DOI: 10.1109/CISES54872.2022.9848814

10.1109/CISES54857.2022.9844375
11

A. R. Damasio, The feeling of what happens: Body and emotion in the making of consciousness. Houghton Mifflin Harcourt [Online], 1999. Available at: blogs.uni-mainz.de [Accessed 02/2025].

12

J. Born, T. Lange, W. Kern, G.P.G. McGregor, U. Bickel, and H.L. Fehm, Sniffing neuropeptides: A transnasal approach to the human brain. Neuroscience. 5(6) (2002), pp. 514-516, DOI: 10.1038/nn849.

10.1038/nn849
13

S. Tomkins, Affect imagery consciousness: Volume I: The positive affects. (1962).

14

A. Ganesan, G. Kumar, J. Gauthaman, K.C. Lakshmi, and Y.A. Kumbalaparambil, Exploring the relationship between psychoneuroimmunology and oral diseases: A comprehensive review and analysis. Journal of Lifestyle Medicine. 14(1) (2024), pp. 13-19.

10.15280/jlm.2024.14.1.13PMC11039437
15

A. Swathi, S. Janani, S. Vats, N. Selvanathan, S. Shanmugapriya, and K. Alagarraja, Emotionally aware artificial intelligence systems for strengthening global human connections and enhancing psychological well-being. Int. Conf. Sustainability Innovation in Computing and Engineering (ICSICE), (2025), pp. 553-564.

10.2991/978-94-6463-718-2_48
16

B. Si and E. Song, Recent advances in the detection of neurotransmitters. Chemosensors. (2024), DOI: 10.3390/chemosensors6010001.

10.3390/chemosensors6010001
17

S.D. Houlihan, M. Kleiman-Weiner, L.B. Hewitt, J.B. Tenenbaum, and R. Saxe, Emotion prediction as computation over a generative theory of mind. Philosophical Transactions of the Royal Society A. 381(2251) (2023), DOI: 10.1098/rsta.2022.0047.

10.1098/rsta.2022.0047PMC10239682
18

P. Li, Y. Lv, R. Wang, T. Chen, J. Gao, and Z. Huang, How do illegitimate tasks affect hospitality employees' adaptive performance? An explanation from the perspective of cognitive-affective system theory of personality. International Journal of Contemporary Hospitality Management. 36(9) (2023), pp. 3032-3051, DOI: 10.1108/IJCHM-04-2023-0538/FULL/XML.

10.1108/IJCHM-04-2023-0538
19

M. Al-Alwan and S. Al-Fatlaw, Urban heritage redevelopment model within historic centre of Hilla, Iraq. International Journal of Sustainable Building Technology and Urban Development. 14(2) (2023), pp. 247-260.

20

L. Zhang, R. Ghosh, M. Dekhil, M. Hsu, and B. Liu, Combining lexicon-based and learning-based methods for Twitter sentiment analysis. HP Lab Technical Report HPL-2011. (2011), academia.edu.

21

S. Vijayalakshmi, AI-Powered Holistic Mental Health Monitoring: Integrating Facial Emotion Recognition, Chatbot, and Voicebot for Personalized Support. Int. Conf. Data Sci., Agents & Artif. Intell. (ICDSAAI). (2025), pp. 1-6.

10.1109/ICDSAAI65575.2025.11011757PMC11895049
22

Pratibha, Multi-modal emotion labelling of Hinglish utterances using iterative active learning [Online], 2025. Available at: Mendeley https://data.mendeley.com/drafts/dh47xpkzh8 [02/2025].

23

X. Liu, G. Zhou, M. Kong, Z. Yin, X. Li, L. Yin, and W. Zheng, Developing multi-labelled corpus of Twitter short texts: A semi-automatic method. Systems. 11(8) (2023), 390, DOI: 10.3390/SYSTEMS11080390.

10.3390/systems11080390
24

S. Chen, R. Wang, and J. Lu, A meta-framework for multi-label active learning based on deep reinforcement learning. Neural Networks. 162 (2023), pp. 258-270, DOI: 10.1016/J.NEUNET.2023.02.045.

10.1016/j.neunet.2023.02.045
25

M.T. Mia, M.Z. Ferdus, M.A. Rahat, N. Anjum, C.U. Siddiqua, and M.A. Raju, A comprehensive review of text mining approaches for predicting human behavior using deep learning method. Journal of Computer Science and Technology Studies. 6(1) (2024), pp. 170-178.

10.32996/jcsts.2024.6.1.18
26

Pratibha, A. Kaur, and M. Khurana, Multimodal Hinglish tweet dataset for deep pragmatic analysis. Data. 9(2) (2024), 38, DOI: 10.3390/data9020038.

10.3390/data9020038
27

A. Yadav and R. Kumari, Towards gender-inclusive cities: Prioritizing safety parameters for sustainable urban development through multi-criteria decision analysis. International Journal of Sustainable Building Technology and Urban Development. 14(3) (2023), pp. 361-374.

28

D.H. Pham, S. Park, and Y. Ahn, A natural language processing-based machine learning approach on building material eco-label databases wrangling. International Journal of Sustainable Building Technology and Urban Development. 15(3) (2023), pp. 367-380.

29

R. Gill and J. Singh, A deep learning model for human emotion recognition on small dataset. (2022), International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India. DOI: 10.1109/ESCI53509.2022.9758261.

10.1109/ESCI53509.2022.9758261
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 16
  • No :2
  • Pages :220-233
  • Received Date : 2025-05-10
  • Accepted Date : 2025-06-13
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
  • isc
Journal Informaiton Journal Informaiton - close