All Issue

2021 Vol.12, Issue 3 Preview Page

General Article

30 September 2021. pp. 251-259
Abstract
References
1
J. Kim, D. Lee, and J. Seo, Task planning strategy and path similarity analysis for an autonomous excavator. Automation in Construction. 112 (2020), 103108. 10.1016/j.autcon.2020.103108
2
J. Kim, S.S. Lee, J. Seo, and V.R. Kamat, Modular data communication methods for a robotic excavator. Automation in Construction. 90 (2018), pp. 166-177. 10.1016/j.autcon.2018.02.007
3
J. Seo, S. Lee, J. Kim, and S.-K. Kim, Task planner design for an automated excavation system. Automation in Construction. 20 (2011), pp. 954-966. 10.1016/j.autcon.2011.03.013
4
S. Lee, D. Hong, H. Park, and J. Bae, Optimal path generation for excavator with neural networks based soil models. in: 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008, pp. 632-637. 10.1109/MFI.2008.4648015.
5
O. Luengo, S. Singh, and H. Cannon, Modeling and identification of soil-tool interaction in automated excavation, in: Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190), 1998, pp. 1900-1906 vol.3. 10.1109/IROS.1998.724873.
6
B. Patel and J. Prajapati, Soil-Tool Interaction As A Review For Digging Operation Of Mini Hydraulic Excavator. International Journal of Engineering Science and Technology. 3 (2011). 10.7763/IJET.2011.V3.277
7
J. Mak, Y. Chen, and M.A. Sadek, Determining parameters of a discrete element model for soil-tool interaction. Soil and Tillage Research. 118 (2012), pp. 117-122. 10.1016/j.still.2011.10.019.
8
M. Ucgul, C. Saunders, and J.M. Fielke, Comparison of the discrete element and finite element methods to model the interaction of soil and tool cutting edge. Biosystems Engineering. 169 (2018), pp. 199-208. 10.1016/j.biosystemseng.2018.03.003.
9
K. Tamás, I.J. Jóri, and A.M. Mouazen, Modelling soil-sweep interaction with discrete element method. Soil and Tillage Research. 134 (2013), pp. 223-231. 10.1016/j.still.2013.09.001.
10
C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle, The material point method for simulating continuum materials,. in: ACM SIGGRAPH 2016 Courses, Association for Computing Machinery, Anaheim, California, 2016: pp. 1-52. 10.1145/2897826.2927348.
11
Occupational Safety and Health Administration, 1926.651 - Specific Excavation Requirements, (n.d.). https://www.osha.gov/laws-regs/regulations/standardnumber/1926/1926.651 [Accessed 6/9/2021].
12
U. Technologies, Unity Real-Time Development Platform | 3D, 2D VR & AR Engine, (n.d.). https://unity.com/ (accessed September 6, 2021).
13
Y. Hu, yuanming-hu/taichi_mpm, 2020. https://github.com/yuanming-hu/taichi_mpm (accessed July 7, 2020).
14
yuanming-hu/taichi_mpm, GitHub. (n.d.). https://github.com/yuanming-hu/taichi_mpm [Accessed 7/7/2020].
15
DX225LC-5 Crawler Excavator | Doosan Infracore NA, (n.d.). https://na.doosanequipment.com/en/construction- equipment/crawler-excavators/dx225lc-5 [Accessed 29/9/2021].
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 12
  • No :3
  • Pages :251-259
  • Received Date : 2021-09-09
  • Accepted Date : 2021-09-30
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close