All Issue

2024 Vol.15, Issue 4 Preview Page

General Article

31 December 2024. pp. 498-512
Abstract
References
1

Z. Ali, L. Jiao, T. Baker, G. Abbas, Z.H. Abbas, and S. Khaf, A deep learning approach for energy efficient computational offloading in mobile edge computing. IEEE Access. (7) (2019), pp. 149623-149633.

10.1109/ACCESS.2019.2947053
2

S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, Dynamic scheduling for stochastic edge-cloud computing environments using a3c learning and residual recurrent neural networks. IEEE transactions on Mobile Computing. 21(3) (2020), pp. 940-954.

10.1109/TMC.2020.3017079
3

D. Saxena, A.K. Singh, and R. Buyya, OP-MLB: an online VM prediction-based multi-objective load balancing framework for resource management at cloud data center. IEEE Transactions on Cloud Computing. 10(4) (2021), pp. 2804-2816.

10.1109/TCC.2021.3059096
4

S. Mohammed, O. Ma, S. Ansari, and S.K. Gupta, Collaboration of Drone and Internet of Public Safety Things in Smart Cities: An Overview of QoS and Network Performance Optimization. Drones, MDPI, 3(1) (2019), pp. 1-18.

10.3390/drones3010013
5

A. Shakarami, M. Arani, and A. Shahidinejad, A Survey on the Computation Offloading Approaches in Mobile Edge Computing: A Machine Learning-Based Perspective. Computer Network. 182 (2020), pp. 1-24.

10.1016/j.comnet.2020.107496
6

D. Sharma, S.K. Gupta, A. Rashid, S. Gupta, M. Rashid, and A. Srivastava, A novel approach for securing data against intrusion attacks in unmanned aerial vehicles integrated heterogeneous network using functional encryption technique. Transactions on Emerging Telecommunications Technologies, Wiley. 32(7) (2020), pp. 1-32.

10.1002/ett.4114
7

A. Gupta, S.K. Gupta, M. Rashid, A. Khan, and M. Manjul, Unmanned aerial vehicles integrated HetNet for smart dense urban area. Transactions on Emerging Telecommunications Technologies, Wiley. 33(10) (2020), pp. 1-22.

10.1002/ett.4123
8

S.K. Zaman, A.I. Jehangiri, T. Maqsood, N.U. Haq, A.I. Umar, J. Shuja, Z. Ahmad, I.B. Dhaou, and M.F. Alsharekh, LiMPO: Lightweight mobility prediction and offloading framework using machine learning for mobile edge computing. Cluster Computing. 26(1) (2023), pp. 99-117.

10.1007/s10586-021-03518-7
9

Y. Cho, M. Oh, S. Park, and S. Lee. Efficiency and possibility of data-driven smart cities. International Journal of Sustainable Building Technology and Urban Development. 12(4) (2021), pp. 323-334.

10

H. Gupta, A. Vahid Dastjerdi, S.K. Ghosh, and R. Buyya, ifogsim: A toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. Software: Practice and Experience. 47(9) (2017), pp. 1275-1296.

10.1002/spe.2509
11

C. Kwon and Y. Ahn, Critical views on AI (Artificial Intelligence) in building design. International Journal of Sustainable Building Technology and Urban Development. 15(2) (2024), pp. 240-246.

12

I. Sharma, S.K. Gupta, A. Mishra, and S. Askar, Synchronous Federated Learning based Multi Unmanned Aerial Vehicles for Secure Applications. Scalable Computing: Practice and Experience, 24(3) (2023), pp. 191-201.

10.12694/scpe.v24i3.2136
13

T. Deepika and N.M. Dhanya, Multi-objective prediction-based optimization of power consumption for cloud data centers. Arabian Journal for Science and Engineering. 48(2) (2023), pp. 1173-1191.

10.1007/s13369-022-06694-9
14

V.D.A. Kumar, A. Kumar, R.S. Batth, M. Rashid, S.K. Gupta, and R. Manish, Efficient Data Transfer in Edge Envisioned Environment using Artificial Intelligence based Edge Node Algorithm. Transactions on Emerging Telecommunications Technologies, Wiley. 32(6) (2020), pp. 1-15.

10.1002/ett.4110
15

M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, An energy-efficient VM prediction and migration framework for overcommitted clouds. IEEE Transactions on Cloud Computing. 6(4) (2016), pp. 955-966.

10.1109/TCC.2016.2564403
16

N.T. Hieu, M. Di Francesco, and A. Ylä-Jääski, Virtual machine consolidation with multiple usage prediction for energy-efficient cloud data centers. IEEE Transactions on Services Computing. 13(1) (2017), pp. 186-199.

10.1109/TSC.2017.2648791
17

P. Kaur, A.M. Mishra, N. Goyal, S.K. Gupta, A. Shankar, and W. Viriyasitavat, A Novel Hybrid CNN Methodology for Automated Leaf Disease Detection and Classification. Expert Systems, Wiley. 41(8) (2024), pp. 1-18.

10.1111/exsy.13543
18

M. Al-Khafajiy, T. Baker, A. Waraich, D. Al-Jumeily, and A. Hussain, IoT-fog optimal workload via fog offloading. In 2018 IEEE/ACM international conference on utility and cloud computing companion (UCC companion), IEEE. (2018), pp. 359-364.

10.1109/UCC-Companion.2018.00081
19

H. Mazouzi, N. Achir, and K. Boussetta, Dm2-ecop: An efficient computation offloading policy for multi-user multi-cloudlet mobile edge computing environment. ACM Transactions on Internet Technology (TOIT). 19(2) (2019), pp. 1-24.

10.1145/3241666
20

T.H. Nguyen, M. Di Francesco, and A. Yla-Jaaski, Virtual machine consolidation with multiple usage prediction for energy-efficient cloud data centers. IEEE Trans. On Serv. Comput. (2017).

21

L. Yu, L. Chen, Z. Cai, H. Shen, Y. Liang, and Y. Pan, Stochastic load balancing for virtual resource management in datacenters. IEEE Transactions on Cloud Computing. 8(2) (2016), pp. 459-472.

10.1109/TCC.2016.2525984
22

A. Gupta and S.K. Gupta, A Study on Secured Unmanned Aerial Vehicle-based Fog Computing Networks. SAE International Journal of Connected and Automated Vehicles. 7(2) (2024), pp. 1-11.

10.4271/12-07-02-0011
23

M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, An energy efficient prediction and migration framework for overcommitted clouds. IEEE Trans. On Cloud Comput. (4) (2018), pp. 955-966.

10.1109/TCC.2016.2564403
24

S.K. Gupta, P. Gupta, and P. Singh, Enhancing UAV-HetNet Security Through Functional Encryption Framework. Concurrency and Computation: Practice and Experience, Wiley. 36(20) (2024), pp. 1-22.

10.1002/cpe.8206
25

F. Syed, S.H. Alsamhi, S.K. Gupta, and A. Saif, LSB-XOR Technique for Securing Captured Images from Disaster by UAVs in B5G Networks. Concurrency and Computation: Practice and Experience, Wiley. 36(12) (2024), pp. 1-13.

10.1002/cpe.8061
26

Q. Zhang, M. Lin, L.T. Yang, Z. Chen, S.U. Khan, and P. Li, A double deep Q learning model for energy-efficient edge scheduling. IEEE Transactions on Services Computing. (preprint). (2018).

27

I. Sharma and S.K. Gupta, Channel Tracking in IRS-based UAV Communication Systems using Federated Learning. Journal of Electrical Engineering. 74(6) (2023), pp. 521-531.

10.2478/jee-2023-0060
28

A. Mishra and S.K. Gupta, Intelligent Classification of Coal Seams Using Spontaneous Combustion Susceptibility in IoT Paradigm. International Journal of Coal Preparation and Utilization, Taylor & Francis. (2023), pp. 1-23.

10.1080/19392699.2023.2217747
29

D. Saxena and A.K. Singh, Security embedded dynamic resource allocation model for cloud data center. Electronics Letters. 56(20) (2020), pp. 1062-1065.

10.1049/el.2020.1736
30

L. Zhao, L. Lu, Z. Jin, and C. Yu, Online virtual machine placement for increasing cloud provider's revenue. IEEE Transactions on Services Computing. 10(2) (2015), pp. 273-285.

10.1109/TSC.2015.2447550
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 15
  • No :4
  • Pages :498-512
  • Received Date : 2024-11-01
  • Accepted Date : 2024-11-30
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
  • isc
Journal Informaiton Journal Informaiton - close