All Issue

2025 Vol.16, Issue 2

General Article

30 June 2025. pp. 161-192
Abstract
References
1

R.F. Zollo, Fiber-reinforced concrete: an overview after 30 years of development. Cement and Concrete Composites. 19(2) (1997), pp. 107-122. DOI: 10.1016/S0958-9465(96)00046-7.

10.1016/S0958-9465(96)00046-7
2

R.S.P. Coutts, A review of Australian research into natural fibre cement composites. Cement & Concrete Composites. 27 (2005), pp. 518-526. DOI: 10.1016/j.cemconcomp.2004.09.003.

10.1016/j.cemconcomp.2004.09.003
3

S. Luhar, T.W. Cheng, and I. Luhar, Incorporation of natural waste from agricultural and aquacultural farming as supplementary materials with green concrete: A review. Composites Part B: Engineering. 175 (2019), 107076. DOI: 10.1016/j.compositesb.2019.107076.

10.1016/j.compositesb.2019.107076
4

C. Turco, A.C. Paula Junior, E.R. Teixeira, and R. Mateus, Optimisation of Compressed Earth Blocks (CEBs) using natural origin materials: A systematic literature review. Construction and Building Materials. 309 (2021), 125140. DOI: 10.1016/j.conbuildmat.2021.125140.

10.1016/j.conbuildmat.2021.125140
5

Food and Agriculture Organization of the United Nations - FAO, Cereal supply and demand data (July 2023) [Dataset], 2023. Available at: https://www.fao.org/fileadmin/templates/worldfood/Reports_and_docs/Cereal_supply_and_demand_data_jul005.xls

6

D.J.M. Flower and J.G. Sanjayan, Green house gas emissions due to concrete manufacture. International Journal of Life Cycle Assessment. 12 (2007). pp. 282-288. DOI: 10.1065/lca2007.05.327.

10.1065/lca2007.05.327
7

T. Gao, L. Shen, M. Shen, F. Chen, L. Liu, and L. Gao, Analysis on differences of carbon dioxide emission from cement production and their major determinants. Journal of Cleaner Production. 103 (2015), pp. 160-170. DOI: 10.1016/j.jclepro.2014.11.026.

10.1016/j.jclepro.2014.11.026
8

K.H. Mo, U.J. Alengaram, M.Z. Jumaat, S.P. Yap, and S.C. Lee, Green concrete partially comprised of farming waste residues: a review. Journal of Cleaner Production. 117 (2016), pp. 122-138. DOI: 10.1016/j.jclepro.2016.01.022.

10.1016/j.jclepro.2016.01.022
9

A.M. Brandt, Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures. 86 (1-3) (2008), pp. 3-9. DOI: 10.1016/j.compstruct.2008.03.006.

10.1016/j.compstruct.2008.03.006
10

A. Petrella, D. Spasiano, S. Liuzzi, U. Ayr, P. Cosma, V. Rizzi, M. Petrella, and R. Di Mundo, Use of cellulose fibers from wheat straw for sustainable cement mortars. Journal of Sustainable Cement-Based Materials. 8(3) (2018), pp. 161-179. DOI: 10.1080/21650373.2018.1534148.

10.1080/21650373.2018.1534148
11

E.C. Pachla, D.B. Silva, K.J. Stein, E. Marangon, and W. Chong, Sustainable application of rice husk and rice straw in cellular concrete composites. Construction and Building Materials. 283 (2021), 122770. DOI: 10.1016/j.conbuildmat.2021.122770.

10.1016/j.conbuildmat.2021.122770
12

X. Zhang, W. Liu, M. Cao, S. Zhang, and J. Hou, Performances of Heat-Insulating Concrete Doped with Straw Fibers for Use in Tunnels. Buildings. 13 (2023), 818. DOI: 10.3390/buildings13030818.

10.3390/buildings13030818
13

E.A. Cazier, T.N. Pham, L. Cossus, M. Abla, T. Ilc, and P. Lawrence, Exploring industrial lignocellulosic waste: Sources, types, and potential as high-value molecules. Waste Management. 188 (2024), pp. 11-38. DOI: 10.1016/j.wasman.2024.07.029.

10.1016/j.wasman.2024.07.029
14

J. Rencoret, G. Marques, M.J. Rosado, J. Benito, F. Barro, A. Gutiérrez, and J.C. del Río, Variations in the composition and structure of the lignins of oat (Avena sativa L.) straws according to variety and planting season. International Journal of Biological Macromolecules. 242, 124811, DOI: 10.1016/j.ijbiomac.2023.124811.

10.1016/j.ijbiomac.2023.124811
15

B. Belhadj, M. Bederina, R.M. Dheilly, L.B. Mboumba-Mamboundou, and M. Quéneudec, Evaluation of the thermal performance parameters of an outside wall made from lignocellulosic sand concrete and barley straws in hot and dry climatic zones. Energy and Buildings. 225 (2020), 110348. DOI: 10.1016/j.enbuild.2020.110348.

10.1016/j.enbuild.2020.110348
16

W. Mengist, T. Soromessa, and G. Legese, Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX. 7 (2020), 100777. DOI: 10.1016/j.mex.2019.100777.

10.1016/j.mex.2019.100777PMC6974768
17

L.B. Shelby and J.J. Vaske, Understanding Meta-Analysis: A Review of the Methodological Literature. Leisure Sciences. 30 (2008), pp. 96-110. DOI: 10.1080/01490400701881366.

10.1080/01490400701881366
18

P. Soroushian, F. Aouadi, H. Chowdhury, A. Nossoni, and G. Sarwar, Cement-bonded straw board subjected to accelerated processing. Cement and Concrete Composites. 26(7) (2004), pp. 797-802. DOI: 10.1016/j.cemconcomp.2003.06.001.

10.1016/j.cemconcomp.2003.06.001
19

P. Soroushian, O. Simsek, M. Elzafraney, and T. Ghebrab, Compatibility of Cereal Straw With Hydration of Cement. The Journal of Solid Waste Technology and Management. 1 (2009), pp. 1-6. DOI: 10.5276/JSWTM.2009.1.

10.5276/JSWTM.2009.1
20

P. Soroushian and M. Hassan, Evaluation of cement-bonded strawboard against alternative cement-based siding products. Construction and Building Materials. 34 (2012), pp. 77-82. DOI: 10.1016/j.conbuildmat.2012.02.011.

10.1016/j.conbuildmat.2012.02.011
21

M. Allam and G. Garas, Recycled chopped rice straw-cement bricks: an analytical and economical study. WIT Transactions on Ecology and the Environment. 140 (2010), pp. 79-86. DOI: 10.2495/WM100081.

10.2495/WM100081
22

M.E. Allam, G.L. Garas, and H.G. El Kady, Recycled Chopped Rice Straw- Cement Bricks: Mechanical, Fire Resistance & Economical Assessment. Australian Journal of Basic and Applied Sciences. 5(2) (2011), pp. 27-33. Available at: https://www.ajbasweb.com/old/ajbas_february_2011.html.

23

A.H. Basta, M.Z. Sefain, and I. El-Rewainy, Role of some treatments on enhancing the eco-friendly utilization of lignocellulosic wastes in production of cement-fiber bricks. BioResources. 6(2) (2011), pp. 1359-1375. Available at: https://bioresources.cnr.ncsu.edu/resources/role-of-some-treatments-on-enhancing-the-eco-friendly-utilization-of-lignocellulosic-wastes-in-production-of-cement-fiber-bricks/.

10.15376/biores.6.2.1359-1375
24

J. Liu, H. Zhou, and B. Zhang, Effect of Rice Straw Amount Portion on Physical Properties of Adding Admixtures Hollow Block. Advanced Materials Research. 450-451 (2012), pp. 727-732. DOI: 10.4028/www.scientific.net/AMR.450-451.727.

10.4028/www.scientific.net/AMR.450-451.727
25

T. Ashour, M. Morsy, A. Korjenic, H. Fischer, M. Khalil, E. Sesto, M. Orabi, and I. Yehia, Engineering Parameters of Rice Straw Concrete with Granulated Blast Furnace Slag. Energies. 14 (2021), 343. DOI: 10.3390/en14020343.

10.3390/en14020343
26

X. Zhang, P. Yu, Y. Li, and Z. Yao, Mechanical Properties and Thermal Insulation of Straw Fiber-Reinforced Perlite Concrete. International Journal of Heat and Technology. 41(1) (2023), pp. 247-252. DOI: 10.18280/ijht.410127.

10.18280/ijht.410127
27

J. Liu, X. Xie, and L. Li, Experimental study on mechanical properties and durability of grafted nano-SiO2 modified rice straw fiber reinforced concrete. Construction and Building Materials. 347 (2022), 128575. DOI: 10.1016/j.conbuildmat.2022.128575.

10.1016/j.conbuildmat.2022.128575
28

M.U. Farooqi and M. Ali, Effect of pre-treatment and content of wheat straw on energy absorption capability of concrete. Construction and Building Materials. 224 (2019), pp. 572-583. DOI: 10.1016/j.conbuildmat.2018.06.041.

10.1016/j.conbuildmat.2018.06.041
29

Z. Kammoun and A. Trabelsi, A high-strength lightweight concrete made using straw. Magazine of Concrete Research. 72(9) (2020), pp. 460-470. DOI: 10.1680/jmacr.19.00225.

10.1680/jmacr.19.00225
30

M.S. Ammari, B. Belhadj, M. Bederina, A. Ferhat, and M. Quéneudec, Contribution of hybrid fibers on the improvement of sand concrete properties: Barley straws treated with hot water and steel fibers. Construction and Building Materials. 233 (2020), 117374. DOI: 10.1016/j.conbuildmat.2019.117374.

10.1016/j.conbuildmat.2019.117374
31

M.S. Ammari, M. Bederina, B. Belhadj, and A. Merrah, Effect of steel fibers on the durability properties of sand concrete with barley straws. Construction and Building Materials. 264 (2020), 120689. DOI: 10.1016/j.conbuildmat.2020.120689.

10.1016/j.conbuildmat.2020.120689
32

F. Ataie, Influence of Rice Straw Fibers on Concrete Strength and Drying Shrinkage. Sustainability. 10 (2018), 2445. DOI: 10.3390/su10072445.

10.3390/su10072445
33

M. Bederina, B. Belhadj, M.S. Ammari, A. Gouilleux, Z. Makhloufi, N. Montrelay, and M. Quéneudec, Improvement of the properties of a sand concrete containing barley straws - Treatment of the barley straws. Construction and Building Materials. 115 (2016), pp. 464-477. DOI: 10.1016/j.conbuildmat.2016.04.065.

10.1016/j.conbuildmat.2016.04.065
34

B. Belhadj, M. Bederina, N. Montrelay, J. Houessou, and M. Quéneudec, Effect of substitution of wood shavings by barley straws on the physico-mechanical properties of lightweight sand concrete. Construction and Building Materials. 66 (2014), pp. 247-258. DOI: 10.1016/j.conbuildmat.2014.05.090.

10.1016/j.conbuildmat.2014.05.090
35

B. Belhadj, M. Bederina, Z. Makhloufi, A. Gouilleux, and M. Quéneudec, Study of the thermal performances of an exterior wall of barley straw sand concrete in an arid environment. Energy and Buildings. 87 (2015), pp. 166-175. DOI: 10.1016/j.enbuild.2014.11.034.

10.1016/j.enbuild.2014.11.034
36

B. Belhadj, M. Bederina, Z. Makhloufi, R.M. Dheilly, N. Montrelay, and M. Quéneudec, Contribution to the development of a sand concrete lightened by the addition of barley straws. Construction and Building Materials. 113 (2016), pp. 513-522. DOI: 10.1016/j.conbuildmat.2016.03.067.

10.1016/j.conbuildmat.2016.03.067
37

J.X. Deng, X. Li, X.J. Li, and T.B. Wei, Research on the Performance of Recycled-Straw Insulating Concrete and Optimization Design of Matching Ratio. Sustainability. 15 (2023), 9608. DOI: 10.3390/su15129608.

10.3390/su15129608
38

M.U. Farooqi and M. Ali, A study on Natural Fibre Reinforced Concrete from Materials to Structural Applications. Arab Journal for Science and Engineering. 48 (2023), pp. 4471-4491. DOI: 10.1007/s13369-022-06977-1.

10.1007/s13369-022-06977-1
39

S. Ghannam, The Influence of Straw and Plastic Fibers on Behavior and Strength of Concrete Mix. International Journal of Recent Technology and Engineering. 8(2) (2019), pp. 2579-2582. Available at: https://www.ijrte.org/wp-content/uploads/papers/v8i2/B2063078219.pdf.

10.35940/ijrte.B2063.078219
40

Z. Kammoun and A. Trabelsi, Mechanical characteristics of a classical concrete lightened by the addition of treated straws. Advances in Concrete Construction. 6(4) (2018), pp. 375-386. DOI: 10.12989/ACC.2018.6.4.375.

41

C. Li, G. Chen, and S. Zhu, Study on the Properties of Straw Fiber Reinforced Cement-Based Composite. Applied Mechanics and Materials. 368-370 (2013), pp. 997-1000. DOI: 10.4028/www.scientific.net/AMM.368-370.997.

10.4028/www.scientific.net/AMM.368-370.997
42

M.M. Mahdy, S.Y. Mahfouz, A.F. Tawfic, and M.A.E.M. Ali, Performance of Rice Straw Fibers on Hardened Concrete Properties under Effect of Impact Load and Gamma Radiation. Fibers. 11 (2023), 42. DOI: 10.3390/fib11050042.

10.3390/fib11050042
43

I. Merta and E.K. Tschegg, Fracture energy of natural fibre reinforced concrete. Construction and Building Materials. 40 (2013), pp. 991-997. DOI: 10.1016/j.conbuildmat.2012.11.060.

10.1016/j.conbuildmat.2012.11.060
44

M.Z.A. Mulok, A.A.M. Solong, W.N.A.N.W.M. Ali, R. Hamid, and M. Kasmuri, Engineering Properties and Impact Resistance of Kenaf and Rice Straw Fibres Reinforced Concrete. Jurnal Kejuruteraan SI. 1(5) (2018), pp. 71-76. DOI: 10.17576/jkukm-2018-si1(5)-10.

10.17576/jkukm-2018-si1(5)-10
45

C. Rihia, H. Hebhoub, L. Kherraf, R. Djebien, and A. Abdelouahed, Valorization of Waste in Sand Concrete Based on Plant Fibres. Civil and Environmental Engineering Reports. 29(4) (2019), pp. 41-61. DOI: 10.2478/ceer-2019-0043.

10.2478/ceer-2019-0043
46

D. Jiang, S. Lv, S. Cui, S. Sun, X. Song, S. He, J. Zhang, and P. An, Effect of thermal insulation components on physical and mechanical properties of plant fibre composite thermal insulation mortar. Journal of Materials Research and Technology. 9(6) (2020), pp. 12996-13013. DOI: 10.1016/j.jmrt.2020.09.009.

10.1016/j.jmrt.2020.09.009
47

P.O. Awoyera, A.D. Akinrinade, A.G. de Sousa Galindo, F. Althoey, M.S. Kirgiz, and B.A. Tayeh, Thermal insulation and mechanical characteristics of cement mortar reinforced with mineral wool and rice straw fibers. Journal of Building Engineering. 53 (2022), 104568. DOI: 10.1016/j.jobe.2022.104568.

10.1016/j.jobe.2022.104568
48

T. Cardinale, G. Arleo, F. Bernardo, A. Feo, and P. De Fazio, Investigations on thermal and mechanical properties of cement mortar with reed and straw fibers. International Journal of Heat and Technology. 35(1) (2017), pp. S375-S382. DOI: 10.18280/ijht.35Sp0151.

10.18280/ijht.35Sp0151
49

B. Feng, J. Liu, Z. Lu, M. Zhang, and X. Tan, Study on properties and durability of alkali activated rice straw fibers cement composites. Journal of Building Engineering. 63(A) (2023), 105515. DOI: 10.1016/j.jobe.2022.105515.

10.1016/j.jobe.2022.105515
50

A. Petrella, S. De Gisi, M.E. Di Clemente, F. Todaro, U. Ayr, S. Liuzzi, M. Dobiszewska, and M. Notarnicola, Experimental Investigation on Environmentally Sustainable Cement Composites Based on Wheat Straw and Perlite. Materials. 15 (2022), 453. DOI: 10.3390/ma15020453.

10.3390/ma15020453PMC8777943
51

F. Qamar, T. Thomas, and M. Ali, Assessment of mechanical properties of fibrous mortar and interlocking soil stabilised block (ISSB) for low-cost masonry housing. Materiales De Construcción. 69(336) (2019), e201. DOI: 10.3989/mc.2019.13418.

10.3989/mc.2019.13418
52

L. Zhang, F. Liu, J. Song, Y. Zhang, and G. Dong, Mechanical Strength and Microstructure Analysis of Cementitious Wheat Straw Composite. Applied Mechanics and Materials. 357-360 (2013), pp. 766-772. DOI: 10.4028/www.scientific.net/AMM.357-360.766.

10.4028/www.scientific.net/AMM.357-360.766
53

J. Liu, H. Zhou, and P. Ouyang, Effect of straw mixing amount on mechanical properties of admixture-adding hollow block. Journal of Wuhan University of Technology-Mater. Sci. Ed. 28 (2013), pp. 508-513. DOI: 10.1007/s11595-013-0722-5.

10.1007/s11595-013-0722-5
54

M.J. Al-Kheetan, Properties of lightweight pedestrian paving blocks incorporating wheat straw: Micro-to macro-scale investigation. Results in Engineering. 16 (2022), 100758. DOI: 10.1016/j.rineng.2022.100758.

10.1016/j.rineng.2022.100758
55

B. Li, W. Huang, B. Luo, and G. Chen, Cycle behaviour of precast composite wall with different ecological filled blocks. Advances in Structural Engineering. 22(2) (2019), pp. 297-310. DOI: 10.1177/1369433218785212.

10.1177/1369433218785212
56

N. Sathiparan and H.T.S.M. De Zoysa, The effects of using agricultural waste as partial substitute for sand in cement blocks. Journal of Building Engineering. 19 (2018), pp. 216-227. DOI: 10.1016/j.jobe.2018.04.023.

10.1016/j.jobe.2018.04.023
57

G. Garas, E. Bakhoum, and M. Allam, Rice straw-cementitious bricks: analytical study on mechanical properties and sustainability measures. ARPN Journal of Engineering and Applied Sciences. 10(18) (2015), pp. 7959-7968. Available at: https://www.arpnjournals.org/jeas/research_papers/rp_2015/jeas_1015_2667.pdf.

58

D. Jiang, D. Jiang, S. Lv, S. Cui, S. Sun, X. Song, S. He, and J. Zhang, Effect of flame-retardant rice straw fibers on properties of fiber cement-based composites at high temperatures. Journal of Building Engineering. 44 (2021), 102923. DOI: 10.1016/j.jobe.2021.102923.

10.1016/j.jobe.2021.102923
59

D. Jiang, D. Jiang, S. Lv, S. Cui, S. Sun, X. Song, S. He, and J. Zhang, Effect of modified wheat straw fiber on properties of fiber cement-based composites at high temperatures. Journal of Materials Research and Technology. 14 (2021), pp. 2039-2060. DOI: 10.1016/j.jmrt.2021.07.105.

10.1016/j.jmrt.2021.07.105
60

D. Jiang, S. Lv, D. Jiang, H. Xu, H. Kang, X. Song, and S. He, Effect of modification methods on water absorption and strength of wheat straw fiber and its cement-based composites. Journal of Building Engineering. 71 (2023), 106466. DOI: 10.1016/j.jobe.2023.106466.

10.1016/j.jobe.2023.106466
61

D. Jiang, P. An, S. Cui, S. Sun, J. Zhang, and T. Tou, Effect of Straw Fiber Modification Methods on Compatibility between Straw Fibers and Cement-Based Materials. Advances in Civil Engineering. (2020), 8392935. DOI: 10.1155/2020/8392935.

10.1155/2020/8392935
62

D. Jiang, P. An, S. Cui, S. Sun, J. Zhang, and T. Tou, Effect of Modification Methods of Wheat Straw Fibers on Water Absorbency and Mechanical Properties of Wheat Straw Fiber Cement-Based Composites. Advances in Materials Science and Engineering. (2020), 5031025. DOI: 10.1155/2020/5031025.

10.1155/2020/5031025
63

M.A. Serifou, O.S.P. Jolissaint, B.R. Kouassi, and E. Edjikémé, Analyse physico-mécanique d'un composite paille de riz/ciment. Matériaux & Techniques. 108(2) (2020), 208. DOI: 10.1051/mattech/2020024.

10.1051/mattech/2020024
64

X. Shang, J. Yang, Q. Song, and L. Wang, Efficacy of modified rice straw fibre on properties of cementitious composites. Journal of Cleaner Production. 276 (2020), 124184. DOI: 10.1016/j.jclepro.2020.124184.

10.1016/j.jclepro.2020.124184
65

J.V.F. Silva, N.A. Bianchi, C.A.B. Oliveira, J.C. Caraschi, A.J.D. de Souza, J.C. Molina, and C.I. Campos, Characterization of composite formed by cement and wheat straw treated with sodium hydroxide. BioResources. 14(2) (2019), pp. 2472-2479. Available at: https://bioresources.cnr.ncsu.edu/resources/characterization-of-composite-formed-by-cement-and-wheat-straw-treated-with-sodium-hydroxide/.

10.15376/biores.14.2.2472-2479
66

M. Nazerian and V. Sadeghiipanah, Cement-bonded particleboard with a mixture of wheat straw and poplar wood. Journal of Forestry Research. 24(2) (2013), pp. 381-390. DOI: 10.1007/s11676-013-0363-8.

10.1007/s11676-013-0363-8
67

S. Zhang, X. Zheng, C. Yin, Y. Ye, and X. Li, Study on the suitability of rice straw and silicate cement. Case Studies in Construction Materials. 18 (2023), e01739. DOI: 10.1016/j.cscm.2022. e01739.

10.1016/j.cscm.2022.e01739
68

X. Xie, Z. Zhou, M. Jiang, X. Xu, Z. Wang, and D. Hui, Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Composites Part B: Engineering. 78 (2015), pp. 153-161. DOI: 10.1016/j.compositesb.2015.03.086.

10.1016/j.compositesb.2015.03.086
69

X. Xie and H. Li, Compatibility between Rice Straw Fibers with Different Pretreatments and Ordinary Portland Cement. Materials. 14 (2021), 6402. DOI: 10.3390/ma14216402.

10.3390/ma14216402PMC8585209
70

J. Ren, Z. Zhao, J. Zhang, J. Wang, S. Guo, and J. Sun, Study on the hygrothermal properties of a Chinese solar greenhouse with a straw block north wall. Energy and Buildings. 193 (2019), pp. 127-138. DOI: 10.1016/j.enbuild.2019.03.040.

10.1016/j.enbuild.2019.03.040
71

J. Zhang, J. Wang, S. Guo, B. Wei, X. He, J. Sun, and S. Shu, Study on heat transfer characteristics of straw block wall in solar greenhouse. Energy and Buildings. 139 (2017), pp. 91-100. DOI: 10.1016/j.enbuild.2016.12.061.

10.1016/j.enbuild.2016.12.061
72

G. Torun and O. Korkut, Preparation of Cement Based Composites and Cellulosic Panels from Barley Straw for Thermal Insulation. Gazi University Journal of Science. 30(1) (2017), pp. 31-42.

73

M. Anas, M. Khan, H. Bilal, S. Jadoon, and M. N. Khan, Fiber Reinforced Concrete: A Review. Engineering proceedings. 22(1) (2022), 3. DOI: 10.3390/engproc2022022003.

10.3390/engproc2022022003
74

A. Pandey and B. Kumar, Utilization of agricultural and industrial waste as replacement of cement in pavement quality concrete: a review. Environmental Science and Pollution Research. 29 (2022), pp. 24504-24546. DOI: 10.1007/s11356-021-18189-5.

10.1007/s11356-021-18189-5
75

J. He, S. Kawasaki, and V. Achal, The Utilization of Agricultural Waste as Agro-Cement in Concrete: A Review. Sustainability. 12(17) (2020), 6971. DOI: 10.3390/su12176971.

10.3390/su12176971
76

A. Suhail, S. Shrivastava, K. Paritosh, N. Pareek, A.A. Kovalev, D.A. Kovalev, Y.V. Litti, V. Panchenko, V. Bolshev, and V. Vivekanand, Advances in Applications of Cereal Crop Residues in Green Concrete Technology for Environmental Sustainability: A Review. Agriculture. 12 (2022), 1266. DOI: 10.3390/agriculture12081266.

10.3390/agriculture12081266
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 16
  • No :2
  • Pages :161-192
  • Received Date : 2024-05-21
  • Accepted Date : 2025-06-08
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
  • isc
Journal Informaiton Journal Informaiton - close