All Issue

2022 Vol.13, Issue 1 Preview Page

General Article

31 March 2022. pp. 44-68
Abstract
References
1
P.K. Katiyar, S. Misra, and K. Mondal, Corrosion Behavior of Annealed Steels with Different Carbon Contents (0.002, 0.17, 0.43 and 0.7% C) in Freely Aerated 3.5% NaCl Solution. J. Mater. Eng. Perform. 28 (2019) pp. 4041-4052. DOI: 10.1007/s11665-019-04137-5. 10.1007/s11665-019-04137-5
2
P.K. Katiyar, S. Misra, and K. Mondal, Effect of Different Cooling Rates on the Corrosion Behavior of High-Carbon Pearlitic Steel. J. Mater. Eng. Perform. 27 (2018). DOI: 10.1007/s11665-018-3256-3. 10.1007/s11665-018-3256-3
3
P.K. Katiyar, S. Misra, and K. Mondal, Comparative Corrosion Behavior of Five Microstructures (Pearlite, Bainite, Spheroidized, Martensite, and Tempered Martensite) Made from a High Carbon Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 50 (2019), pp. 1489-1501. DOI: 10.1007/s11661-018-5086-1. 10.1007/s11661-018-5086-1
4
Neetu, P.K. Katiyar, S. Sangal, and K. Mondal, Effect of various phase fraction of bainite, intercritical ferrite, retained austenite and pearlite on the corrosion behavior of multiphase steels, Corros. Sci. 178 (2021), 109043. DOI: 10.1016/j.corsci.2020.109043. 10.1016/j.corsci.2020.109043
5
J. Wei, J. Dong, Y. Zhou, X. He, C. Wang, and W. Ke, Influence of the secondary phase on micro galvanic corrosion of low carbon bainitic steel in NaCl solution. Mater. Charact. 139 (2018), pp. 401-410. 10.1016/j.matchar.2018.03.021
6
A.P. Moon, S. Sangal, S. Srivastav, N.S. Gajbhiye, and K. Mondal, Passivation and Corrosion Behavior of Modified Ferritic-Pearlitic Railway Axle Steels. J. Mater. Eng. Perform. 24 (2015), pp. 85-97. DOI: 10.1007/s11665-014-1252-9. 10.1007/s11665-014-1252-9
7
B. Panda, R. Balasubramaniam, G. Dwivedi, and S. Mahapatra, Corrosion of novel rail steels in 3.5% NaCl solution. Trans. Indian Inst. Met. 61 (2008), pp. 177-181. 10.1007/s12666-008-0005-6
8
D.N. Staicopolus, The Role of Cementite in the Acidic Corrosion of Steel. J. Electrochem. Soc. 110 (1963), pp. 1121-1124. 10.1149/1.2425602
9
S.N. Saltykov and N.V. Tarasova, Anodic Dissolution of Ferrite Phases from Iron - Carbon Ferrite - Cementite Alloys with Different Forms of Cementite. Prot. Met. 42 (2006), pp. 542-547. DOI: 10.1134/S0033173206050109. 10.1134/S0033173206050109
10
W.S. Tait, An introduction to electrochemical corrosion testing for practicing engineers and scientists. Prog. Org. Coatings. 26 (1995), pp. 37-42. DOI: 10.1016/0300-9440(95)90005-5. 10.1016/0300-9440(95)90005-5
11
X. Hao, J. Dong, I.I.N. Etim, J. Wei, and W. Ke, Sustained effect of remaining cementite on the corrosion behavior of ferrite-pearlite steel under the simulated bottom plate environment of cargo oil tank. Corros. Sci. 110 (2016), pp. 296-304. DOI: 10.1016/j.corsci.2016.04.042. 10.1016/j.corsci.2016.04.042
12
P.-A. Itty, M. Serdar, C. Meral, D. Parkinson, A.A. MacDowell, D. Bjegović, P. Monteiroa, In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste. Corros. Sci. 83 (2014), pp. 409-418. 10.1016/j.corsci.2014.03.010
13
S. Kahl, Corrosion Resistant Alloy Steel (MMFX) Reinforcing Bar in Bridge Decks, (2007) 36p. http://www.michigan.gov/documents/mdot/MDOT_Research_Report_R1499_209781_7.pdf.
14
H. Yumoto, Y. Nagamine, J. Nagahama, and M. Shimotomai, Corrosion and stability of cementite films prepared by electron shower, in: Vacuum, 2002, pp. 527-531. DOI: 10.1016/S0042-207X(01)00467-5. 10.1016/S0042-207X(01)00467-5
15
H.J. Cln and N.D. Greene, Electrochemical properties of Fe and steel. Corros. Sci. 9 (1969), pp. 3-13. 10.1016/S0010-938X(69)80062-4
16
M. Stern, The effect of alloying elements in iron on hydrogen over-voltage and corrosion rate in acid environment. J. Electrochem. Soc. 102 (1955), pp. 663-668. DOI: 10.1149/1.2429938. 10.1149/1.2429938
17
D.N. Staicopolus, The Role of Cementite in the Acidic Corrosion of Steel. J. Electrochem. Soc. 110 (1963), 1121. DOI: 10.1149/1.2425602. 10.1149/1.2425602
18
X. Hao, J. Dong, I.I.N. Etim, J. Wei, and W. Ke, Sustained effect of remaining cementite on the corrosion behavior of ferrite-pearlite steel under the simulated bottom plate environment of cargo oil tank. Corros. Sci. 110 (2016), pp. 296-304. DOI: 10.1016/j.corsci.2016.04.042. 10.1016/j.corsci.2016.04.042
19
S.I. Al-rubaiey, E.A. Anoon, and M.M. Hanoon, The Influence of Microstructure on the Corrosion Rate of Carbon Steels. Eng. Tech. J. 31 (2013), pp. 1-12.
20
A.P. Moon, S. Sangal, S. Layek, S. Giribaskar, and K. Mondal, Corrosion Behavior of High-Strength Bainitic Rail Steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46 (2015), pp. 1500-1518. DOI: 10.1007/s11661-014-2732-0. 10.1007/s11661-014-2732-0
21
J. Sánchez, J. Fullea, C. Andrade, J.J. Gaitero, and A. Porro, AFM study of the early corrosion of a high strength steel in a diluted sodium chloride solution. Corros. Sci. 50 (2008), pp. 1820-1824. DOI: 10.1016/j.corsci.2008.03.013. 10.1016/j.corsci.2008.03.013
22
W.J. Tomlinson and K. Giles, The microstructures and corrosion of a 0.79C steel tempered in the range 100-700°C. Corros. Sci. 23 (1983), pp. 1353-1359. DOI: 10.1016/0010-938X(83)90083-5. 10.1016/0010-938X(83)90083-5
23
D. Clover, B. Kinsella, B. Pejcic, and R. De Marco, The influence of microstructure on the corrosion rate of various carbon steels. J. Appl. Electrochem. 35 (2005), pp. 139-149. DOI: 10.1007/s10800-004-6207-7. 10.1007/s10800-004-6207-7
24
W.R. Osório, L.C. Peixoto, L.R. Garcia, and A. Garcia, Electrochemical corrosion response of a low carbon heat treated steel in a NaCl solution. Mater. Corros. 60 (2009), pp. 804-812. 10.1002/maco.200805181
25
J. Yang, Y. Lu, Z. Guo, J. Gu, and C. Gu, Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution. Corros. Sci. 130 (2018), pp. 64-75. DOI: 10.1016/j.corsci.2017.10.027. 10.1016/j.corsci.2017.10.027
26
W.T. Tsai and J.R. Chen, Galvanic corrosion between the constituent phases in duplex stainless steel. Corros. Sci. 49 (2007), pp. 3659-3668. 10.1016/j.corsci.2007.03.035
27
P.K. Katiyar, P.K. Behera, S. Misra, and K. Mondal, Effect of Microstructures on the Corrosion Behavior of Reinforcing Bars (Rebar) Embedded in Concrete. Met. Mater. Int. 25 (2019), pp. 1209-1226. DOI: 10.1007/s12540-019-00288-1. 10.1007/s12540-019-00288-1
28
P.K. Katiyar, P.K. Behera, S. Misra, and K. Mondal, Comparative Corrosion Behavior of Five Different Microstructures of Rebar Steels in Simulated Concrete Pore Solution with and Without Chloride Addition. J. Mater. Eng. Perform. 28 (2019). DOI: 10.1007/s11665-019-04339-x. 10.1007/s11665-019-04339-x
29
P.K. Katiyar, B. Bhushan, and K. Mondal, Relook at the Mechanisms of Spheroidization of 0.7 wt.% C Steel by Potentiodynamic Polarization. Metallogr. Microstruct. Anal. 8 (2019), pp. 840-847. DOI: 10.1007/s13632-019-00588-3. 10.1007/s13632-019-00588-3
30
P.K. Katiyar, P.K. Behera, S. Misra, and K. Mondal, Effect of Microstructures on the Corrosion Behavior of Reinforcing Bars (Rebar) Embedded in Concrete. Met. Mater. Int. 25 (2019). DOI: 10.1007/s12540-019-00288-1. 10.1007/s12540-019-00288-1
31
G.P. Singh, A.P. Moon, S. Sengupta, G. Deo, S. Sangal, and K. Mondal, Corrosion Behavior of IF Steel in Various Media and Its Comparison with Mild Steel. J. Mater. Eng. Perform. 24 (2015), pp. 1961-1974. DOI: 10.1007/s11665-015-1448-7. 10.1007/s11665-015-1448-7
32
E. Corro and A.P. Measurements, Standard Practice for from Electrochemical Measurements 1, 89 (2016) 1-7. DOI: 10.1520/G0102-89R15E01.2.
33
W.R. Osório, L.C. Peixoto, L.R. Garcia, and A. Garcia, Electrochemical corrosion response of a low carbon heat treated steel in a NaCl solution, Mater. Corros. 60 (2009), pp. 804-812. DOI: 10.1002/maco.200805181. 10.1002/maco.200805181
34
T. Dalgleish, J.M.G.. Williams, A.-M.J. Golden, N. Perkins, L.F. Barrett, P.J. Barnard, N. Perez, Electrochemistry and Corrosion Science, Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow, 2004.
35
J. Li, H. Su, F. Chai, D. Xue, L. Li, X. Li, H. Meng, Corrosion behavior of low-carbon Cr micro-alloyed steel for grounding grids in simulated acidic soil. J. Iron Steel Res. Int. 25 (2018), pp. 755-766. 10.1007/s42243-018-0108-1
36
R. Cabrera-Sierra, N. Batina, and I. González, Electrochemical Characterization of Pearlite Phase Oxidation of 1018 Carbon Steel in a Borate Medium using ECSTM Technique. J. Electrochem. Soc. 152 (2005), B534. DOI: 10.1149/1.2109527. 10.1149/1.2109527
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 13
  • No :1
  • Pages :44-68
  • Received Date :2022. 02. 21
  • Accepted Date : 2022. 03. 07
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close