All Issue

2022 Vol.13, Issue 1 Preview Page

General Article

31 March 2022. pp. 23-43
Abstract
References
1
M.F. Hassanein, O.F. Kharoob, and Q.Q. Liang, Circular concrete-filled double skin tubular short columns with external stainless-steel tubes under axial compression. Thin-Walled Structures. 73(2) (2013), pp. 52-263. DOI: 10.1016/j.tws.2013.08.017. 10.1016/j.tws.2013.08.017
2
X.-L. Zhao and L.-H. Han, Double skin composite construction. Progress in Structural Engineering and Materials. 8(3) (2006), pp. 93-102. DOI: 10.1002/pse.216. 10.1002/pse.216
3
F. Wang, L. Han, and W. Li, Analytical behavior of CFDST stub columns with external stainless-steel tubes under axial compression. Thin-Walled Structures. 127 (2018), pp. 756-768. DOI: 10.1016/j.tws.2018.02.021. 10.1016/j.tws.2018.02.021
4
Z. Tao, B. Uy, L.-H. Han, and Z.-B. Wang, Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression. Thin-Walled Structures. 47(12) (2009), pp. 1544-1556. DOI: 10.1016/j.tws.2009.05.006. 10.1016/j.tws.2009.05.006
5
F. Yuan, H. Huang, and M. Chen, Behavior of square concrete-filled stiffened steel tubular stub columns under axial compression. Advances in Structural Engineering. (2019), 136943321881958. DOI: 10.1177/1369433218819584. 10.1177/1369433218819584
6
S. Alqawzai, K. Chen, L. Shen, M. Ding, B. Yang, and M. Elchalakani, Behavior of octagonal concrete-filled double-skin steel tube stub columns under axial compression. Journal of Constructional Steel Research. 170 (2020), pp. 106-115. DOI: 10.1016/j.jcsr.2020.106115. 10.1016/j.jcsr.2020.106115
7
F. Wang, B. Young, and L. Gardner, Compressive testing and numerical modelling of concrete-filled double skin CHS with austenitic stainless-steel outer tubes. Thin-walled Structures. 141 (2019), pp. 345-359. 10.1016/j.tws.2019.04.003.
8
M. Elchalakani, V. Patel, A. Karrech, M. Hassanein, S. Fawzia, and B. Yang, Finite Element Simulation of Circular Short CFDST Columns under Axial Compression, Elsevier, Structures. (2019), pp. 607-619. 10.1016/j.istruc.2019.06.004
9
Q.Q. Liang, Nonlinear analysis of circular double-skin concrete-filled steel tubular columns under axial compression. Engineering Structures. 131 (2017), pp. 639-650. DOI: 10.1016/j.engstruct.2016.10.019. 10.1016/j.engstruct.2016.10.019
10
M. Ahmed, Q.Q. Liang, V.I. Patel, and M.N.S. Hadi, Numerical analysis of axially loaded circular high strength concrete-filled double steel tubular short columns. Thin-Walled Struct. 138 (2019), pp. 105-116. 10.1016/j.tws.2019.02.001
11
M. Elchalakani, M.F. Hassanein, A. Karrech, S. Fawzia, B. Yang, and V.I. Patel, Experimental tests and design of rubberised concrete-filled double skin circular tubular short columns. Structures. 15 (2018), pp. 196-210. DOI: 10.1016/j.istruc.2018.07.004. 10.1016/j.istruc.2018.07.004
12
M. Elchalakani, X.L. Zhao, and R.H. Grzebieta, Tests on Concrete-filled Double-Skin Composite Short Columns under Axial Compression. Thin-Walled Structures. 40(5) (2002), pp. 415-441. 10.1016/S0263-8231(02)00009-5
13
M. Elchalakani, M.F. Hassanein, A. Karrech, and B. Yang, Experimental investigation of rubberised concrete-filled double skin square tubular columns under axial compression. Engineering Structures. 171 (2018), pp. 730-746. DOI: 10.1016/j.engstruct.2018.05.123. 10.1016/j.engstruct.2018.05.123
14
F. Wang, B. Young, and L. Gardner, Experimental study of square and rectangular CFDST sections with stainless steel outer tubes under axial compression. Journal of Structural Engineering, ASCE. 145(11) (2019), 04019139. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002408. 10.1061/(ASCE)ST.1943-541X.0002408
15
F. Ding, Z. Li, S. Cheng, and Z. Yu, Composite action of octagonal concrete-filled steel tubular stub columns under axial loading. Thin-Walled Structures. 107 (2016), pp. 453-461. DOI: 10.1016/j.tws.2016.07.012. 10.1016/j.tws.2016.07.012
16
J.-Y. Zhu and T.-M. Chan, Experimental investigation on octagonal concrete filled steel stub columns under uniaxial compression. Journal of Constructional Steel Research. 147 (2018), pp. 457-467. DOI: 10.1016/j.jcsr.2018.04.030. 10.1016/j.jcsr.2018.04.030
17
M.F. Hassanein, V.I. Patel, M. Elchalakani, and H.-T. Thai, Finite element analysis of large diameter high strength octagonal CFST short columns. Thin-Walled Structures. 123 (2018), pp. 467-482. DOI: 10.1016/j.tws.2017.11.007. 10.1016/j.tws.2017.11.007
18
J. Yang, H. Xu, and G. Peng, Behavior of concrete-filled double skin steel tubular columns with octagon section under axial compression. Frontiers of Architecture and Civil Engineering in China. 2(3) (2008), pp. 205-210. DOI: 10.1007/s11709-008-0035-5. 10.1007/s11709-008-0035-5
19
W. Yuan and J. Yang, Experimental and numerical studies of short concrete-filled double skin composite tube columns under axially compressive loads. Journal of Constructional Steel Research. 80 (2013), pp. 23-31. DOI: 10.1016/j.jcsr.2012.09.014. 10.1016/j.jcsr.2012.09.014
20
EN1994-1-1, Eurocode4 Design of Steel and Concrete Structures, Part1.1, General rules and rules for buildings, European Committee for Standardization CEN, Brussels, 2004.
21
ANSI/AISC 360-16, Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, USA, 2016.
22
DBJ/T 13-51-2010, Technical Specification for Concrete-filled Steel Tubular Structures, The Department of Housing and Urban-Rural Development of Fujian Province, Fuzhou (China) (in Chinese), 2010.
23
V.I. Patel, B. Uy, K.A. Prajwal, and F. Aslani, Confined concrete model of circular, elliptical and octagonal CFST short columns. Steel and Composite Structures. 22(3) (2016), pp. 497-520. 10.12989/scs.2016.22.3.497
24
J.B. Mander, M.N.J. Priestly, and R. Park, Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, ASCE. 114(8) (1988), pp. 1804-1826. 10.1061/(ASCE)0733-9445(1988)114:8(1804)
25
J.C. Lim and T. Ozbakkaloglu, Stress-strain model for normal-and light-weight conunder uniaxial and triaxial compression. Construction Building Materials. 71 (2014), pp. 492-509. 10.1016/j.conbuildmat.2014.08.050
26
M. Ahmed, Q.Q. Liang, V.I. Patel, and M.N.S. Hadi, Nonlinear analysis of rectangular concrete-filled double steel tubular short columns incorporating local buckling. Journal of Structural Engineering, 175 (2018), pp. 13-26. 10.1016/j.engstruct.2018.08.032
27
Q.Q. Liang, Performance-based analysis of concrete-filled steel tubular beam-columns, Part I: Theory and algorithms. Journal of Constructional Steel Research. 65(2) (2009), pp. 363-372. 10.1016/j.jcsr.2008.03.007
28
Q.Q. Liang and S. Fragomeni, Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading. Journal of Constructional Steel Research. 65(12) (2009), pp. 2186-2196. 10.1016/j.jcsr.2009.06.015
29
F.E. Richart, A. Bradtzaeg, and R.L. Brown, A study of the failure of concrete under combined compressive stresses. Bull. 185 (1928). Champaign (III): University of Illionis, Engineering Experimental Station.
30
H.T. Hu, C.S. Huang, M. Wu, and Y. Wu, Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. Journal of Structural Engineering, ASCE. 129(10) (2003), pp. 1322-1329. 10.1061/(ASCE)0733-9445(2003)129:10(1322)
31
X. Dai and D. Lam, Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns. Journal of Constructional Steel Research. 66(7) (2010), pp. 931-942. 10.1016/j.jcsr.2010.02.003
32
Z. Tao, Z.B. Wang, and Q. Yu, Finite element modelling of concrete-filled steel stub columns under axial compression. Journal of Constructional Steel Research. 89 (2013), pp. 121-131. 10.1016/j.jcsr.2013.07.001
33
Y.-B. Zhang, L.-H. Han, K. Zhou, and S. Yang, Mechanical performance of hexagonal multi-cell concrete-filled steel tubular (CFST) stub columns under axial compression. Thin-Walled Structures. 134 (2019), pp. 71-83. DOI: 10.1016/j.tws.2018.09.027. 10.1016/j.tws.2018.09.027
34
D.H. Nguyen, W.-K. Hong, H.-J. Ko, and S.-K. Kim, Finite element model for the interface between steel and concrete of CFST (concrete-filled steel tube). Engineering Structures. 185 (2019), pp. 141-158. 10.1016/j.engstruct.2019.01.068
35
ASCE/SEI, Design of steel transmission pole structures. ASCE/SEI 48. Reston, VA: ASCE/SEI, 2011.
36
BS 5950-1, Structural Use of Steelwork in Building-Part 1: Code of Practice for Design-Rolled and Welded Sections, The Standards Policy and Strategy Committee, 2000.
37
W.F. Chen and D.J. Han, Plasticity for Structural Engineers. J. Ross Publishing. NewYork, USA, 2007.
38
Z. Lai, A.H. Varma, and K. Zhang, Noncompact and slender rectangular CFT members: Experimental database, analysis, and design. Journal of Constructional Steel Research. 101 (2014), pp. 455-468. DOI: 10.1016/j.jcsr.2014.06.004. 10.1016/j.jcsr.2014.06.004
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 13
  • No :1
  • Pages :23-43
  • Received Date : 2022-01-26
  • Accepted Date : 2022-03-15
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close