General Article
S. Kittipat and S. Bunritt, Dermatological classification using deep learning of skin image and patient background knowledge. International Journal of Machine Learning and Computing. 9(6) (2019), pp. 862-867.
10.18178/ijmlc.2019.9.6.884V.B. Kumar, S.S. Kumar, and V. Saboo, Dermatological Disease Detection Using Image Processing and Machine Learning. 2016 3rd Int. Conf. Artif. Intell. Pattern Recognition, AIPR. (2016), pp. 88-93.
10.1109/ICAIPR.2016.7585217H. Fujita, The role of IL-22 and Th22 cells in human skin diseases. J. Dermatol. Sci. 72(1) (2013), pp. 3-8.
10.1016/j.jdermsci.2013.04.028L.F. Li, X. Wang, W.J. Hu, N.N. Xiong, Y.X. Du, and B.S. Li, Deep Learning in Skin Disease Image Recognition: A Review. IEEE Access. 8 (2020), pp. 208264-208280.
10.1109/ACCESS.2020.3037258M. Amagai and J.R. Stanley, Desmoglein as a Target in Skin Disease and Beyond. J. Invest. Dermatol. 132(3) (2012), pp. 776-784.
10.1038/jid.2011.390PMC3279627S. Vyas, A. Banerjee, and P. Burlina, Machine learning methods for in vivo skin parameter estimation. Proc. - IEEE Symp. Comput. Med. Syst. (2013), pp. 524-525.
10.1109/CBMS.2013.6627860K. Shibuya, C.D. Mathers, C. Boschi-Pinto, A.D. Lopez, and C.J.L. Murray, Global and regional estimates of cancer mortality and incidence by site: II. Results for the global burden of disease 2000. BMC Cancer. 2 (2002), pp. 1-26.
10.1186/1471-2407-2-37PMC149364C. Karimkhani, R.P. Dellavalle, L.E. Coffeng, C. Flohr, R.J. Hay, S.M. Langan, E.O. Nsoesie, A.J. Ferrari, H.E. Erskine, J.I. Silverberg, T. Vos, and M. Naghavi, Global Skin Disease Morbidity and Mortality: An Update From the Global Burden of Disease Study 2013. JAMA Dermatology. 153(5) (2017), pp. 406-412.
10.1001/jamadermatol.2016.5538PMC5817488H.I. Suk and D. Shen, Deep Learning-Based Feature Representation for AD/MCI Classification, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8150 LNCS, (2013), pp. 583-590.
10.1007/978-3-642-40763-5_72PMC4029347N.C.F. Codella, Q.B. Nguyen, S. Pankanti, D.A. Gutman, B. Helba, and A.C. Halpern, Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J. Res. Dev. 61(4) (2017), pp. 5-1.
10.1147/JRD.2017.2708299N. Codella, J. Cai, M. Abedini, R. Garnavi, A. Halpern, and J.R. Smith, Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 9352 (2015), pp. 118-126.
10.1007/978-3-319-24888-2_15S.V. Deo, H. Sidhartha, S. Nootan, K.K. Sunil, K. Madhabananda, and S. Atul, Surgical management of skin cancers: Experience from a regional cancer centre in North India. Indian J. Cancer. 42(3) (2005), pp. 145-150.
10.4103/0019-509X.17059R. Sumithra, M. Suhil, and D.S. Guru, Segmentation and Classification of Skin Lesions for Disease Diagnosis. Procedia Comput. Sci. 45 (2015), pp. 76-85.
10.1016/j.procs.2015.03.090A.A. Elngar, R. Kumar, A. Hayat, and P. Churi, Intelligent System for Skin Disease Prediction using Machine Learning. J. Phys. Conf. Ser. 1998(1) (2021), 012037.
10.1088/1742-6596/1998/1/012037M. Usama, M.A. Naeem, and F. Mirza, Multi-Class Skin Lesions Classification Using Deep Features. Sensors. 22(21) (2022), 8311.
10.3390/s22218311PMC9658979E. Agu, P. Pedersen, D. Strong, B. Tulu, Q. He, L. Wang, and Y. Li, The smartphone as a medical device: Assessing enablers, benefits and challenges. 2013 IEEE Int. Work. Internet-of-Things Netw. Control. IoT-NC. (2013), pp. 48-52.
10.1109/IoT-NC.2013.6694053P. Pouladzadeh, P. Kuhad, S.V.B. Peddi, A. Yassine, and S. Shirmohammadi, Food calorie measurement using deep learning neural network. Conf. Rec. - IEEE Instrum. Meas. Technol. Conf. 2016 (2016).
10.1109/I2MTC.2016.7520547E. Roger, L. Torlay, J. Gardette, C. Mosca, S. Banjac, L. Minotti, P. Kahane, and M. Baciu, A machine learning approach to explore cognitive signatures in patients with temporo-mesial epilepsy. Neuropsychologia. 142 (2020), 107455.
10.1016/j.neuropsychologia.2020.107455P.S. Kohli and S. Arora, Application of machine learning in disease prediction, Dec. (2018).
10.1109/CCAA.2018.8777449G.S. Vennila, L.P. Suresh, and K.L. Shunmuganathan, Dermoscopic image segmentation and classification using machine learning algorithms. 2012 Int. Conf. Comput. Electron. Electr. Technol. ICCEET. (2012), pp. 1122-1127.
10.1109/ICCEET.2012.6203834H. Li, Y. Pan, J. Zhao, and L. Zhang, Skin disease diagnosis with deep learning: A review. Neurocomputing. 464 (2021), pp. 364-393.
10.1016/j.neucom.2021.08.096M. K.K, K. Sankaranarayanan, and P. Seena, Prediction of Different Dermatological Conditions Using Naïve Bayesian Classification. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(1) (2014), 2277.
R.B. Oliveira, M.E. Filho, Z. Ma, J.P. Papa, A.S. Pereira, and J.M.R.S. Tavares, Computational methods for the image segmentation of pigmented skin lesions: A review. Comput. Methods Programs Biomed. 131 (2016), pp. 127-141.
10.1016/j.cmpb.2016.03.032G. Sahu and R. Kumar Khare, Decision Tree Classification based Decision Support System for Derma Disease. Int. J. Comput. Appl. 94(17) (2014), pp. 975-8887.
10.5120/16451-6171V.R. Balaji, S.T. Suganthi, R. Rajadevi, V. Krishna Kumar, B. Saravana Balaji, and S. Pandiyan, Skin disease detection and segmentation using dynamic graph cut algorithm and classification through Naive Bayes classifier. Meas. J. Int. Meas. Confed. 163 (2020), 107922.
10.1016/j.measurement.2020.107922S.P. Singh, L. Wang, S. Gupta, H. Goli, P. Padmanabhan, and B. Gulyás, 3D Deep Learning on Medical Images: A Review. Sensors. 20(18) (2020), 5097.
10.3390/s20185097PMC7570704M.R. Hasan, M.I. Fatemi, M. Monirujjaman Khan, M. Kaur, and A. Zaguia, Comparative Analysis of Skin Cancer (Benign vs. Malignant) Detection Using Convolutional Neural Networks. J. Healthc. Eng. (2021).
10.1155/2021/5895156PMC8684510S. Srivastava, S. Soman, A. Rai, and P.K. Srivastava, Deep learning for health informatics: Recent trends and future directions. 2017 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2017. 3 (2017), pp. 1665-1670.
10.1109/ICACCI.2017.8126082A. Alrabiah, M. Alduailij, and M. Crane, Computer-based Approach to Detect Wrinkles and Suggest Facial Fillers. IJACSA, Int. J. Adv. Comput. Sci. Appl. 10(9) (2019).
10.14569/IJACSA.2019.0100941S.A. Aldera, M. Tahar, and B. Othman, A Model for Classification and Diagnosis of Skin Disease using Machine Learning and Image Processing Techniques. IJACSA, Int. J. Adv. Comput. Sci. Appl. 13(5) (2022), 2022.
10.14569/IJACSA.2022.0130531N. Hameed, A. Shabut, and M.A. Hossain, A Computer-Aided diagnosis system for classifying prominent skin lesions using machine learning. 2018 10th Comput. Sci. Electron. Eng. Conf. CEEC 2018 - Proc. (2019), pp. 186-191.
10.1109/CEEC.2018.8674183J.L. Seixas, S. Barbon, and R.G. Mantovani, Pattern recognition of lower member skin ulcers in medical images with machine learning algorithms. Proc. - IEEE Symp. Comput. Med. Syst. (2015), pp. 50-53.
10.1109/CBMS.2015.48V. Gautam, V. Gautam, N.K. Trivedi, A. Anand, R. Tiwari, A. Zaguia, D. Koundal, and S. Jain, Early Skin Disease Identification Using eep Neural Network. Comput. Syst. Sci. Eng. 44(3) (2022), pp. 2259-2275.
10.32604/csse.2023.026358S. Chatterjee, D. Dey, and S. Munshi, Mathematical morphology aided shape, texture and colour feature extraction from skin lesion for identification of malignant melanoma. 2015 Int. Conf. Cond. Assess. Tech. Electr. Syst. CATCON 2015 - Proc. (2015), pp. 200-203.
10.1109/CATCON.2015.7449534G. Zhang, L. Zhong, Y. Huang, and Y. Zhang, A histopathological image feature representation method based on deep learning. Proc. - 2015 7th Int. Conf. Inf. Technol. Med. Educ. ITME 2015. (2016), pp. 13-17.
10.1109/ITME.2015.34S. Putatunda, A Hybrid Deep Learning Approach for Diagnosis of the Erythemato-Squamous Disease. Proc. CONECCT 2020 - 6th IEEE Int. Conf. Electron. Comput. Commun. Technol., Jul. (2020).
10.1109/CONECCT50063.2020.9198447L. Alzubaidi, J. Zhang, A.J. Humaidi, A.A. Dujaili, Y. Duan, O.A. Shamma, J. Santamaria, M.A. Fadhel, M.A. Amidie, and L. Farhan, Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data. 8(1) (2021), pp. 1-74.
10.1186/s40537-021-00444-8PMC8010506U. Leiter, U. Keim, and C. Garbe, Epidemiology of skin cancer: Update 2019. Adv. Exp. Med. Biol. 1268 (2020), pp. 123-139.
10.1007/978-3-030-46227-7_6H.M. Gloster and K. Neal, Skin cancer in skin of color. J. Am. Acad. Dermatol. 55(5) (2006), pp. 741-760.
10.1016/j.jaad.2005.08.063Z. Apalla, A. Lallas, E. Sotiriou, E. Lazaridou, and D. Ioannides, Epidemiological trends in skin cancer What Does the Future Hold. Dermatol. Pract. Concept. 7(2) (2017), pp. 1-6.
10.5826/dpc.0702a01PMC5424654N. Alfed and F. Khelifi, Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standard images. Expert Syst. Appl. 90 (2017), pp. 101-110.
10.1016/j.eswa.2017.08.010C. Kwon and Y. Ahn, Critical views on AI (Artificial Intelligence) in building design. Int. J. of Sustai. Build. Techn. and Urban Dev. 15(2) (2024), pp. 240-246.
M. Gowthaman and S. Sathpriya, A Comprehensive review of analysis of geo-cell reinforced grit bed on footings. Int. J. of Sustai. Build. Techn. and Urban Dev. 15(4) (2024), pp. 465-483.
S.P. Burger and M. Luke, Business models for distributed energy resources: A review and empirical analysis. Energy Policy. 109 (2015), pp. 230-248.
10.1016/j.enpol.2017.07.007H.L. Howe, P.A. Wingo, M.J. Thun, L.A.G. Ries, H.M. Rosenberg, E.G. Feigal, and B.K. Edwards, Annual Report to the Nation on the Status of Cancer (1973 Through 1998), Featuring Cancers With Recent Increasing Trends. JNCI J. Natl. Cancer Inst. 93(11) (2001), pp. 824-842.
10.1093/jnci/93.11.824A. Haddad and S.A. Hameed, Image Analysis Model for Skin Disease Detection: Framework. in Proceedings of the 2018 7th International Conference on Computer and Communication Engineering, ICCCE. (2018), pp. 280-283.
10.1109/ICCCE.2018.8539270T. Saba, Region Extraction and Classification of Skin Cancer: A Heterogeneous framework of Deep CNN Features Fusion and Reduction, (2019).
10.1007/s10916-019-1413-3M.S. Kolkur, D.R. Kalbande, and V. Kharkar, Machine Learning Approaches to Multi-Class Human Skin Disease Detection. Int. J. Comput. Intell. Res. 14(1) (2018), pp. 29-39.
N.S. Alkolifi Alenezi, A Method Of Skin Disease Detection Using Image Processing And Machine Learning. Procedia Comput. Sci. 163 (2019), pp. 85-92.
10.1016/j.procs.2019.12.090S. Dash, S.K. Shakyawar, M. Sharma, and S. Kaushik, Big data in healthcare: management, analysis and future prospects. J. Big Data, 6(1) (2019).
10.1186/s40537-019-0217-0R. Bauder, T.M. Khoshgoftaar, and N. Seliya, A survey on the state of healthcare upcoding fraud analysis and detection. Heal. Serv. Outcomes Res. Methodol. 17(1) (2017), pp. 31-55.
10.1007/s10742-016-0154-8Z. Khurshid, A. De Brún, G. Moore, and E. McAuliffe, Virtual adaptation of traditional healthcare quality improvement training in response to COVID-19: a rapid narrative review. Hum. Resour. Health. 18(1) (2020), pp. 1-18.
10.1186/s12960-020-00527-2PMC7594275K. Jinoos, A. Mohammad, A. Masood, and D. Ali, Ethnobotanical Study of Medicinal Plants used in Skin Diseases in the Area Alamut-Qazvin. Iran, J. Med. Plants. 18(72) (2019), pp. 121-132.
10.29252/jmp.4.72.S12.121M. Adel Ebaid, A framework for implementing biophilic design in cancer healthcare spaces to enhance patients's experience. Int. J. of Sustai. Build. Techn. and Urban Dev. 14(2) (2023), pp. 229-246.
N. Deshmukh, Low-Cost Device Prototype for Automatic Medical Diagnosis Using Deep Learning Methods. 2018 9th IEEE Annu. Ubiquitous Comput. Electron. Mob. Commun. Conf. UEMCON. (2018), pp. 695-699.
10.1109/UEMCON.2018.8796551M. Dildar, S. Akram, M. Irfan, H.U. Khan, M. Ramzan, A.R. Mahmood, S.A. Alsaiari, A.H.M. Saeed, M.O. Alraddadi, and M.H. Mahnashi, Skin Cancer Detection: A Review Using Deep Learning Techniques, 2021.
10.3390/ijerph18105479PMC8160886M. Arora, A. Prakash, S. Dixit, A. Mittal, and S. Singh, A critical review of HR analytics: visualization and bibliometric analysis approach. Inf. Discov. Deliv. (2022).
10.1108/IDD-05-2022-0038S. Harnal, G. Sharma, S. Malik, G. Kaur, S. Khurana, P. Kaur, S. Simaiya, and D. Bagga, Bibliometric Mapping of Trends, Applications and Challenges of Artificial Intelligence in Smart Cities. EAI Endorsed Trans. Scalable Inf. Syst. 9(4) (2022), pp. e8-e8.
10.4108/eetsis.vi.489B.S. dos Santos, M.T.A. Steiner, A.T. Fenerich, and R.H.P. Lima, Data mining and machine learning techniques applied to public health problems: A bibliometric analysis from 2009 to 2018. Comput. Ind. Eng. 138 (2019), pp. 106120.
10.1016/j.cie.2019.106120F. Suhail, M. Adel, M. Al-Emran, and K. Shaalan, A Bibliometric Analysis on the Role of Artificial Intelligence in Healthcare. Stud. Comput. Intell. 1024 (2022), pp. 1-14.
10.1007/978-981-19-1076-0_1X. Pei, K. Zuo, Y. Li, and Z. Pang, A Review of the Application of Multi-modal Deep Learning in Medicine: Bibliometrics and Future Directions. Int. J. Comput. Intell. Syst. 16(1) (2023), pp. 1-20.
10.1007/s44196-023-00225-6D. Kim, Y. Chae, H.J. Park, and I.S. Lee, A bibliometric analysis of atopic dermatitis research over the past three decades and future perspectives. Healthc. 9(12) (2021), pp. 1-14.
10.3390/healthcare9121749PMC8702046N.J. van Eck and L. Waltman, Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 84(2) (2010), pp. 523-538.
10.1007/s11192-009-0146-3PMC2883932K. Mahadevan and S. Joshi, Omnichannel retailing: a bibliometric and network visualization analysis. Benchmarking. 29(4) (2022), pp. 1113-1136.
10.1108/BIJ-12-2020-0622X. Xiong, X. Guo, and Y. Wang, Modeling of Human Skin by the Use of Deep Learning. (2021).
10.1155/2021/5531585N.I.A. Dabowsa, N.M. Amaitik, A.M. Maatuk, and S.A. Aljawarneh, A hybrid intelligent system for skin disease diagnosis. Proc. 2017 Int. Conf. Eng. Technol. ICET 2017. 2018 (2017), pp. 1-6.
10.1109/ICEngTechnol.2017.8308157R. Parisi, I.Y.K. Iskandar, E. Kontopantelis, M. Augustin, C.E.M. Griffiths, and D.M. Ashcroft, National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ. 369 (2020).
10.1136/bmj.m1590PMC7254147H. Williams, C. Robertson, A. Stewart, N.A. Khaled, G. Anabwani, R. Anderson, I. Asher, R. Beasley, B. Björkstén, M. Burr, T. Clayton, J. Crane, P. Ellwood, U. Keil, C. Lai, J. Mallol, F. Martinez, E. Mitchell, S. Montefort, N. Pearce, and S.K. Weiland, Worldwide variations in the prevalence of symptoms of atopic eczema in the international study of asthma and allergies in childhood. J. Allergy Clin. Immunol. 103(1) (1999), pp. 125-138.
10.1016/S0091-6749(99)70536-1S.S. Mohammed and J.M. Al-Tuwaijari, Skin Disease Classification System Based on Machine Learning Technique: A Survey. IOP Conf. Ser. Mater. Sci. Eng. 1076(1) (2021), 012045.
10.1088/1757-899X/1076/1/012045D.N. Jaysawal, Rural Health System in India: A Review. SSRN Electron. J. Feb. (2015).
10.2139/ssrn.2608313D.A. Gavrilov, A.V. Melerzanov, N.N. Shchelkunov, and E.I. Zakirov, Use of Neural Network-Based Deep Learning Techniques for the Diagnostics of Skin Diseases. Biomed. Eng. (NY). 52(5) (2019), pp. 348-352.
10.1007/s10527-019-09845-9P. Tschandl, C. Rosendahl, and H. Kittler, Data descriptor: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data. 5 (2018), pp. 1-9.
10.1038/sdata.2018.161PMC6091241M.E. Celebi, H.A. Kingravi, B. Uddin, H. Iyatomi, Y.A. Aslandogan, W.V. Stoecker, and R.H. Mosset, A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6) (2007), pp. 362-373.
10.1016/j.compmedimag.2007.01.003PMC3192405K. Zafar, S.O. Gilani, A. Waris, A. Ahmed, M. Jamil, M.N. Khan, and A.S. Kashif, Skin lesion segmentation from dermoscopic images using convolutional neural network. Sensors (Switzerland). 20(6) (2020), pp. 1-14.
10.3390/s20061601PMC7147706B.K. Yoon, J.A. Jackman, E.R. Valle-González, and N.J. Cho, Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 19(8) (2018).
10.3390/ijms19041114PMC5979495P.N. Srinivasu, J.G. Sivasai, M.F. Ijaz, A.K. Bhoi, W. Kim, and J.J. Kang, Networks with MobileNet V2 and LSTM. (2021), pp. 1-27.
- Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
- Publisher(Ko) :건설구조물 내구성혁신 연구센터
- Journal Title :International Journal of Sustainable Building Technology and Urban Development
- Volume : 16
- No :2
- Pages :251-267
- Received Date : 2025-05-14
- Accepted Date : 2025-06-08
- DOI :https://doi.org/10.22712/susb.20250016